ﻻ يوجد ملخص باللغة العربية
The gravitational deflection of light ray is an important prediction of General Theory of Relativity. In this paper we develop analytical expression of the deflection of light ray without any weak field approximation due to a charged gravitational body represented by Reissner_Nordstrom (RN) and Janis-Newman-Winicour (JNW) space time geometry, using material medium approach. It is concluded that although both the geometries represent the charged, non-rotating, spherically symmetric gravitating body, but the effect of charge on the gravitational deflection is just opposite to each other. The gravitational deflection decreases with charge in the RN geometry and increases with charge in the JNW geometry. The calculations obtained here are compared with other methods done by different authors. The formalism is applied to an arbitrary selected pulsar PSRB1937+21 as a gravitating body, as a test case.
Deflection of light due to massive objects was predicted by Einstein in his General Theory of Relativity. This deflection of light has been calculated by many researchers in past, for spherically symmetric objects. But, in reality, most of these grav
We study motions of photons in an unmagnetized cold homogeneous plasma medium in the five-dimensional charged static squashed Kaluza-Klein black hole spacetime. In this case, a photon behaves as a massive particle in a four-dimensional spherically sy
The influence of the medium on the gravitational deflection of light rays is widely discussed in literature for the simplest non-trivial case: cold non-magnetized plasma. In this article, we generalize these studies to the case of an arbitrary transp
Based on the Jacobi metric method, this paper studies the deflection of a charged massive particle by a novel four-dimensional charged Einstein-Gauss-Bonnet black hole. We focus on the weak field approximation and consider the deflection angle with f
Working by analogy, we use the description of light fluctuations due to random collisions of the radiating atoms to figure out why the reduction of the coherence for light propagating a cosmological distance in the fluctuating background space is neg