ﻻ يوجد ملخص باللغة العربية
We demonstrate improved operation of exchange-coupled semiconductor quantum dots by substantially reducing the sensitivity of exchange operations to charge noise. The method involves biasing a double-dot symmetrically between the charge-state anti-crossings, where the derivative of the exchange energy with respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling. We find that this method reduces the dephasing effect of charge noise by more than a factor of five in comparison to operation near a charge-state anti-crossing, increasing the number of observable exchange oscillations in our qubit by a similar factor. Performance also improves with exchange rate, favoring fast quantum operations.
We have used Ramsey tomography to characterize charge noise in a weakly charge-sensitive superconducting qubit. We find a charge noise that scales with frequency as $1/f^alpha$ over 5 decades with $alpha = 1.93$ and a magnitude $S_q(text{1Hz})= 2.9ti
The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits (qubits) are susceptible to two types of error, corresponding to flips of the qubit state a
We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively couple
The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here we demonstrate both resonant and non-resonant photon-mediated coherent interacti
We propose nanoscale magnetometry via isolated single-spin qubits as a probe of superconductivity in two-dimensional materials. We characterize the magnetic field noise at the qubit location, arising from current and spin fluctuations in the sample a