ترغب بنشر مسار تعليمي؟ اضغط هنا

Tropical Skeletons

80   0   0.0 ( 0 )
 نشر من قبل Joseph Rabinoff
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the interplay between tropical and analytic geometry for closed subschemes of toric varieties. Let $K$ be a complete non-Archimedean field, and let $X$ be a closed subscheme of a toric variety over $K$. We define the tropical skeleton of $X$ as the subset of the associated Berkovich space $X^{rm an}$ which collects all Shilov boundary points in the fibers of the Kajiwara--Payne tropicalization map. We develop polyhedral criteria for limit points to belong to the tropical skeleton, and for the tropical skeleton to be closed. We apply the limit point criteria to the question of continuity of the canonical section of the tropicalization map on the multiplicity-one locus. This map is known to be continuous on all torus orbits; we prove criteria for continuity when crossing torus orbits. When $X$ is schon and defined over a discretely valued field, we show that the tropical skeleton coincides with a skeleton of a strictly semistable pair, and is naturally isomorphic to the parameterizing complex of Helm--Katz.



قيم البحث

اقرأ أيضاً

The goal of this article is to classify unramified covers of a fixed tropical base curve $Gamma$ with an action of a finite abelian group G that preserves and acts transitively on the fibers of the cover. We introduce the notion of dilated cohomology groups for a tropical curve $Gamma$, which generalize simplicial cohomology groups of $Gamma$ with coefficients in G by allowing nontrivial stabilizers at vertices and edges. We show that G-covers of $Gamma$ with a given collection of stabilizers are in natural bijection with the elements of the corresponding first dilated cohomology group of $Gamma$.
In this article, we present a massively parallel framework for computing tropicalizations of algebraic varieties which can make use of finite symmetries. We compute the tropical Grassmannian TGr$_0(3,8)$, and show that it refines the $15$-dimensional skeleton of the Dressian Dr$(3,8)$ with the exception of $23$ special cones for which we construct explicit obstructions to the realizability of their tropical linear spaces. Moreover, we propose algorithms for identifying maximal-dimensional tropical cones which belong to the positive tropicalization. These algorithms exploit symmetries of the tropical variety even though the positive tropicalization need not be symmetric. We compute the maximal-dimensional cones of the positive Grassmannian TGr$^+(3,8)$ and compare them to the cluster complex of the classical Grassmannian Gr$(3,8)$.
Motivated by the realizability problem for principal tropical divisors with a fixed ramification profile, we explore the tropical geometry of the double ramification locus in $mathcal{M}_{g,n}$.There are two ways to define a tropical analogue of the double ramification locus: one as a locus of principal divisors, the other as a locus of finite effective ramified covers of a tree. We show that both loci admit a structure of a generalized cone complex in $M_{g,n}^{trop}$, with the latter contained in the former. We prove that the locus of principal divisors has cones of codimension zero in $M_{g,n}^{trop}$, while the locus of ramified covers has the expected codimension $g$. This solves the deformation-theoretic part of the realizability problem for principal divisors, reducing it to the so-called Hurwitz existence problem for covers of a fixed ramification type.
The aim of this paper is to study homological properties of tropical fans and to propose a notion of smoothness in tropical geometry, which goes beyond matroids and their Bergman fans and which leads to an enrichment of the category of smooth tropica l varieties. Among the resulting applications, we prove the Hodge isomorphism theorem which asserts that the Chow rings of smooth unimodular tropical fans are isomorphic to the tropical cohomology rings of their corresponding canonical compactifications, and prove a slightly weaker statement for any unimodular fan. We furthermore introduce a notion of shellability for tropical fans and show that shellable tropical fans are smooth and thus enjoy all the nice homological properties of smooth tropical fans. Several other interesting properties for tropical fans are shown to be shellable. Finally, we obtain a generalization, both in the tropical and in the classical setting, of the pioneering work of Feichtner-Yuzvinsky and De Concini-Procesi on the cohomology ring of wonderful compactifications of complements of hyperplane arrangements. The results in this paper form the basis for our subsequent works on Hodge theory for tropical and non-Archimedean varieties.
112 - Jaeho Shin 2020
A biconvex polytope is a convex polytope that is also tropically convex. It is well known that every bounded cell of a tropical linear space is a biconvex polytope, but its converse has been a conjecture. We classify biconvex polytopes, and prove the conjecture by constructing a matroid subdivision dual to a biconvex polytope. In particular, we construct matroids from bipartite graphs, and establish the relationship between bipartite graphs and faces of a biconvex polytope. We also show that there is a bijection between monomials and a maximal set of vertices of a biconvex polytope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا