ﻻ يوجد ملخص باللغة العربية
In this work we reveal and explore a new class of attractor neural networks, based on inborn connections provided by model molecular markers, the molecular marker based attractor neural networks (MMBANN). We have explored conditions for the existence of attractor states, critical relations between their parameters and the spectrum of single neuron models, which can implement the MMBANN. Besides, we describe functional models (perceptron and SOM) which obtain significant advantages, while using MMBANN. In particular, the perceptron based on MMBANN, gets specificity gain in orders of error probabilities values, MMBANN SOM obtains real neurophysiological meaning, the number of possible grandma cells increases 1000- fold with MMBANN. Each set of markers has a metric, which is used to make connections between neurons containing the markers. The resulting neural networks have sets of attractor states, which can serve as finite grids for representation of variables in computations. These grids may show dimensions of d = 0, 1, 2,... We work with static and dynamic attractor neural networks of dimensions d = 0 and d = 1. We also argue that the number of dimensions which can be represented by attractors of activities of neural networks with the number of elements N=104 does not exceed 8.
The theory of communication through coherence (CTC) proposes that brain oscillations reflect changes in the excitability of neurons, and therefore the successful communication between two oscillating neural populations depends not only on the strengt
Periodic neural activity not locked to the stimulus or to motor responses is usually ignored. Here, we present new tools for modeling and quantifying the information transmission based on periodic neural activity that occurs with quasi-random phase r
Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neurons probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an informa
Rhythmic electrical activity in the brain emerges from regular non-trivial interactions between millions of neurons. Neurons are intricate cellular structures that transmit excitatory (or inhibitory) signals to other neurons, often non-locally, depen
In recent years, artificial neural networks have achieved state-of-the-art performance for predicting the responses of neurons in the visual cortex to natural stimuli. However, they require a time consuming parameter optimization process for accurate