ﻻ يوجد ملخص باللغة العربية
Azimuthally asymmetric dust distributions observed with ALMA in transition disks have been interpreted as dust traps. We present VLA Ka band (34 GHz or 0.9 cm) and ALMA Cycle 2 Band 9 (680 GHz or 0.45 mm) observations at 0.2 resolution of the Oph IRS 48 disk, which suggest that larger particles could be more azimuthally concentrated than smaller dust grains, assuming an axisymmetric temperature field or optically thin 680 GHz emission. Fitting an intensity model to both data demonstrates that the azimuthal extent of the millimeter emission is 2.3 $pm0.9$ times as wide as the centimeter emission, marginally consistent with the particle trapping mechanism under the above assumptions. The 34 GHz continuum image also reveals evidence for ionized gas emission from the star. Both the morphology and the spectral index variations are consistent with an increase of large particles in the center of the trap, but uncertainties remain due to the continuum optical depth at 680 GHz. Particle trapping has been proposed in planet formation models to allow dust particles to grow beyond millimeter sizes in the outer regions of protoplanetary disks. The new observations in the Oph IRS 48 disk provide support for the dust trapping mechanism for centimeter-sized grains, although additional data is required for definitive confirmation.
Simple molecules like H2CO and CH3OH in protoplanetary disks are the starting point for the production of more complex organic molecules. So far, the observed chemical complexity in disks has been limited due to freeze out of molecules onto grains in
We present the first resolved near infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric sub-millimeter flux distribution. H-band polarized intensity images show a $sim$60AU
The processes that form transition disks - disks with depleted inner regions - are not well understood; possible scenarios include planet formation, grain growth and photoevaporation. Disks with spatially resolved dust holes are rare, but, in general
(Abridged) Transition disks are recognized by the absence of emission of small dust grains inside a radius of up to several 10s of AUs. Due to the lack of angular resolution and sensitivity, the gas content of such dust holes has not yet been determi
We test the hypothesis that the disc cavity in the `transition disc Oph IRS 48 is carved by an unseen binary companion. We use 3D dust-gas smoothed-particle hydrodynamics simulations to demonstrate that marginally coupled dust grains concentrate in t