ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-range Ising and Kitaev Models: Phases, Correlations and Edge Modes

97   0   0.0 ( 0 )
 نشر من قبل Davide Vodola
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the quantum phases, correlation functions and edge modes for a class of spin-1/2 and fermionic models related to the 1D Ising chain in the presence of a transverse field. These models are the Ising chain with anti-ferromagnetic long-range interactions that decay with distance $r$ as $1/r^alpha$, as well as a related class of fermionic Hamiltonians that generalise the Kitaev chain, where both the hopping and pairing terms are long-range and their relative strength can be varied. For these models, we provide the phase diagram for all exponents $alpha$, based on an analysis of the entanglement entropy, the decay of correlation functions, and the edge modes in the case of open chains. We demonstrate that violations of the area law can occur for $alpha lesssim1$, while connected correlation functions can decay with a hybrid exponential and power-law behaviour, with a power that is $alpha$-dependent. Interestingly, for the fermionic models we provide an exact analytical derivation for the decay of the correlation functions at every $alpha$. Along the critical lines, for all models breaking of conformal symmetry is argued at low enough $alpha$. For the fermionic models we show that the edge modes, massless for $alpha gtrsim 1$, can acquire a mass for $alpha < 1$. The mass of these modes can be tuned by varying the relative strength of the kinetic and pairing terms in the Hamiltonian. Interestingly, for the Ising chain a similar edge localization appears for the first and second excited states on the paramagnetic side of the phase diagram, where edge modes are not expected. We argue that, at least for the fermionic chains, these massive states correspond to the appearance of new phases, notably approached via quantum phase transitions without mass gap closure. Finally, we discuss the possibility to detect some of these effects in experiments with cold trapped ions.



قيم البحث

اقرأ أيضاً

We consider the Kitaev chain model with finite and infinite range in the hopping and pairing parameters, looking in particular at the appearance of Majorana zero energy modes and massive edge modes. We study the system both in the presence and in the absence of time reversal symmetry, by means of topological invariants and exact diagonalization, disclosing very rich phase diagrams. In particular, for extended hopping and pairing terms, we can get as many Majorana modes at each end of the chain as the neighbors involved in the couplings. Finally we generalize the transfer matrix approach useful to calculate the zero-energy Majorana modes at the edges for a generic number of coupled neighbors.
We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak ph ase of the lower band eigenvector and the winding number of the Hamiltonians. For exponentially-decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive non-local Dirac fermion localised at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.
We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two type s of gapped regimes, where correlation functions decay exponentially at short range and algebraically at long range ($alpha > 1$) or purely algebraically ($alpha < 1$). Most interestingly, along the critical lines, long-range pairing is found to break conformal symmetry for sufficiently small $alpha$. This is accompanied by a violation of the area law for the entanglement entropy in large parts of the phase diagram in the presence of a gap, and can be detected via the dynamics of entanglement following a quench. Some of these features may be relevant for current experiments with cold atomic ions.
Inspired by Fr{o}hlich-Spencer and subsequent authors who introduced the notion of contour for long-range systems, we provide a definition of contour and a direct proof for the phase transition for ferromagnetic long-range Ising models on $mathbb{Z}^ d$, $dgeq 2$. The argument, which is based on a multi-scale analysis, works for the sharp region $alpha>d$ and improves previous results obtained by Park for $alpha>3d+1$, and by Ginibre, Grossmann, and Ruelle for $alpha> d+1$, where $alpha$ is the power of the coupling constant. The key idea is to avoid a large number of small contours. As an application, we prove the persistence of the phase transition when we add a polynomial decaying magnetic field with power $delta>0$ as $h^*|x|^{-delta}$, where $h^* >0$. For $d<alpha<d+1$, the phase transition occurs when $delta>d-alpha$, and when $h^*$ is small enough over the critical line $delta=d-alpha$. For $alpha geq d+1$, $delta>1$ it is enough to prove the phase transition, and for $delta=1$ we have to ask $h^*$ small. The natural conjecture is that this region is also sharp for the phase transition problem when we have a decaying field.
We study the effects of disorder on a Kitaev chain with longer-range hopping and pairing terms which is capable of forming local zero energy excitations and, hence, serves as a minimal model for localization-protected edge qubits. The clean phase dia gram hosts regions with 0, 1, and 2 Majorana zero-modes (MZMs) per edge. Using a semi-analytic approach corroborated by numerical calculations of the entanglement degeneracy, we show how phase boundaries evolve under the influence of disorder. While in general the 2 MZM region is stable with respect to moderate disorder, stronger values drive transition towards the topologically trivial phase. We uncover regions where the addition of disorder induces local zero-modes absent for the corresponding clean system. Interestingly, we discover that disorder destroys any direct transition between phases with zero and two MZMs by creating a tricritical point at the 2-0 MZM boundary of the clean system. Finally, motivated by recent experiments, we calculate the characteristic signatures of the disorder phase diagram as measured in dynamical local and non-local qubit correlation functions. Our work provides a minimal starting point to investigate the coherence properties of local qubits in the presence of disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا