ﻻ يوجد ملخص باللغة العربية
Within the context of the collaboration B fields in OB stars (BOB), we used the FORS2 low-resolution spectropolarimeter to search for a magnetic field in 50 massive stars, including two reference magnetic massive stars. Because of the many controversies of magnetic field detections obtained with the FORS instruments, we derived the magnetic field values with two completely independent reduction and analysis pipelines. We compare and discuss the results obtained from the two pipelines. We obtained a general good agreement, indicating that most of the discrepancies on magnetic field detections reported in the literature are caused by the interpretation of the significance of the results (i.e., 3-4 sigma detections considered as genuine, or not), instead of by significant differences in the derived magnetic field values. By combining our results with past FORS1 measurements of HD46328, we improve the estimate of the stellar rotation period, obtaining P = 2.17950+/-0.00009 days. For HD125823, our FORS2 measurements do not fit the available magnetic field model, based on magnetic field values obtained 30 years ago. We repeatedly detect a magnetic field for the O9.7V star HD54879, the HD164492C massive binary, and the He-rich star CPD -57 3509. We obtain a magnetic field detection rate of 6+/-4%, while by considering only the apparently slow rotators we derive a detection rate of 8+/-5%, both comparable with what was previously reported by other similar surveys. We are left with the intriguing result that, although the large majority of magnetic massive stars is rotating slowly, our detection rate is not a strong function of the stellar rotational velocity.
The B fields in OB stars (BOB) collaboration is based on an ESO Large Programme, to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. In the framework of this programme, we carried out low-resolut
The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in mass
HD 164492C is a spectroscopic triple stellar system that has been recently detected to possess a strong magnetic field. We have obtained high-resolution spectroscopic and spectropolarimetric observations over a timespan of two years and derived physi
Recent magnetic field surveys in O- and B-type stars revealed that about 10% of the core-hydrogen-burning massive stars host large-scale magnetic fields. The physical origin of these fields is highly debated. To identify and model the physical proces
We reduced ESOs archival linear spectropolarimetry data (4000-9000AA) of 6 highly polarized and 8 unpolarized standard stars observed between 2010 and 2016, for a total of 70 epochs, with the FOcal Reducer and low dispersion Spectrograph (FORS2) moun