ترغب بنشر مسار تعليمي؟ اضغط هنا

Does P-type Ohmic Contact Exist in WSe2-metal Interfaces?

105   0   0.0 ( 0 )
 نشر من قبل Yangyang Wang Miss
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of 2D WSe2 devices. We present the first comparative study of the interfacial properties between ML/BL WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, Pd contact has the smallest hole SBH with a value no less than 0.22 eV. Dramatically, Pt contact surpasses Pd contact and becomes p-type Ohmic or quasi-Ohmic contact with inclusion of the SOC. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices.



قيم البحث

اقرأ أيضاً

Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, we report scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line (FEOL) and back-end-of-line (BEOL) compatible temperatures of 800 {deg}C and 400 {deg}C, respectively. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p-type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p-type nature of the V dopants is further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, our study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic-grade wafer-scale extrinsic 2D semiconductors.
The surfaces of perovskite oxides affect their functional properties, and while a bulk-truncated (1$times$1) termination is generally assumed, its existence and stability is controversial. Here, such a surface is created by cleaving the prototypical SrTiO$_3$(001) in ultra-high vacuum, and its response to thermal annealing is observed. Atomically resolved nc-AFM shows that intrinsic point defects on the as-cleaved surface migrate at temperatures above 200,$^circ$C. At 400--500,$^circ$C, a disordered surface layer forms, albeit still with a (1$times$1) pattern in LEED. Purely TiO$_2$-terminated surfaces, prepared by wet-chemical treatment, are also disordered despite their (1$times$1) periodicity in LEED.
With the use of density functional theory calculations and addition of van der Waals correction, the graphene/HfS$_2$ heterojunction is constructed, and its electronic properties are examined thoroughly. This interface is determined as $n$-type Ohmic and the impacts of different amounts of interlayer distance and strain on the contact are shown using Schottky barrier height and electron injection efficiency. Dipole moment and workfunction of the interface are also altered when subjected to change in these two categories. The transition between Ohmic to Schottky contact is also depicted to be possible by applying a perpendicular electric field, proving this to be yet another useful method for tuning different properties of this structure. The conclusions given in this paper can exert an immense amount of influence on the development of two-dimensional HfS$_2$ based devices in the future.
We achieved ohmic contacts down to 5 K on standard n-doped Ge samples by creating a strongly doped thin Ge layer between the metallic contacts and the Ge substrate. Thanks to the laser doping technique used, Gas Immersion Laser Doping, we could attai n extremely large doping levels above the solubility limit, and thus reduce the metal/doped Ge contact resistance. We tested independently the influence of the doping concentration and doped layer thickness, and showed that the ohmic contact improves when increasing the doping level and is not affected when changing the doped thickness. Furthermore, we characterised the doped Ge/Ge contact, showing that at high doping its contact resistance is the dominant contribution to the total contact resistance.
Hydrogen as a fuel can be stored safely with high volumetric density in metals. It can, however, also be detrimental to metals causing embrittlement. Understanding fundamental behavior of hydrogen at atomic scale is key to improve the properties of m etal-metal hydride systems. However, currently, there is no robust technique capable of visualizing hydrogen atoms. Here, we demonstrate that hydrogen atoms can be imaged unprecedentedly with integrated differential phase contrast, a recently developed technique performed in a scanning transmission electron microscope. Images of the titanium-titanium monohydride interface reveal remarkable stability of the hydride phase, originating from the interplay between compressive stress and interfacial coherence. We also uncovered, thirty years after three models were proposed, which one describes the position of the hydrogen atoms with respect to the interface. Our work enables novel research on hydrides and is extendable to all materials containing light and heavy elements, including oxides, nitrides, carbides and borides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا