ﻻ يوجد ملخص باللغة العربية
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in ($beta-$) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.
In this paper, we systematically study spherically symmetric static spacetimes in the framework of Einstein-aether theory, and pay particular attention to the existence of black holes (BHs). In the present studies we first clarify several subtle issu
We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painlev`e-Gullstrand, and Schwarzschild coordinates, in which the aether is always comoving, and present both time-dependent and
We investigate Kantowski-Sachs models in Einstein-{ae}ther theory with a perfect fluid source using the singularity analysis to prove the integrability of the field equations and dynamical system tools to study the evolution. We find an inflationary
We use a dynamical systems analysis to investigate the future behaviour of Einstein-Aether cosmological models with a scalar field coupling to the expansion of the aether and a non-interacting perfect fluid. The stability of the equilibrium solutions
By using of the Euler-Lagrange equations, we find a static spherically symmetric solution in the Einstein-aether theory with the coupling constants restricted. The solution is similar to the Reissner-Nordstrom solution in that it has an inner Cauchy