ﻻ يوجد ملخص باللغة العربية
In a two-user channel, completion time refers to the number of channel uses spent by each user to transmit a bit pool with some given size. In this paper, the information-theoretic formulation of completion time is based on the concept of constrained rates, where users are allowed to employ different numbers of channel uses for transmission as opposed to the equal channel use of the standard information-theoretic formulation. Analogous to the capacity region, the completion time region characterizes all possible trade-offs among users completion times. For a multi-access channel, it is shown that the completion time region is achieved by operating the channel in two independent phases: a multi-access phase when both users are transmitting, and a point-to-point phase when one user has finished and the other is still transmitting. Using a similar two-phase approach, the completion time region (or inner and outer bounds) is established for a Gaussian broadcast channel and a Gaussian interference channel. It is observed that although consisting of two convex subregions, the completion time region may not be convex in general. Finally an optimization problem of minimizing the weighted sum completion time for a Gaussian multi-access channel and a Gaussian broadcast channel is solved, demonstrating the utility of the completion time approach.
This work identifies information-theoretic quantities that are closely related to the required list size for successive cancellation list (SCL) decoding to implement maximum-likelihood decoding. It also provides an approximation for these quantities
A key practical constraint on the design of Hybrid automatic repeat request (HARQ) schemes is the size of the on-chip buffer that is available at the receiver to store previously received packets. In fact, in modern wireless standards such as LTE and
Given a probability measure $mu$ over ${mathbb R}^n$, it is often useful to approximate it by the convex combination of a small number of probability measures, such that each component is close to a product measure. Recently, Ronen Eldan used a stoch
The characterisation of information processing is an important task in complex systems science. Information dynamics is a quantitative methodology for modelling the intrinsic information processing conducted by a process represented as a time series,
In the robust secure aggregation problem, a server wishes to learn and only learn the sum of the inputs of a number of users while some users may drop out (i.e., may not respond). The identity of the dropped users is not known a priori and the server