ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent results from SU(2) with one adjoint Dirac fermion

84   0   0.0 ( 0 )
 نشر من قبل Ed Bennett
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present some results for SU(2) with one adjoint Dirac flavour from lattice studies. Data for the spectroscopy, the static potential, topological charge, and the anomalous dimension of the fermionic condensate are included. Our findings are found to be in- consistent with conventional confining behaviour, instead pointing tentatively towards a theory lying within or very near the onset of the conformal window, with an anomalous dimension of the fermionic condensate of almost 1. Implications of these findings on the building of models of strongly-interacting dynamics beyond the standard model are discussed.



قيم البحث

اقرأ أيضاً

SU(2) gauge theory with one Dirac flavour in the adjoint representation is investigated on a lattice. Initial results for the gluonic and mesonic spectrum, static potential from Wilson and Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode number are presented. The results found are not consistent with conventional confining behaviour, instead tentatively pointing towards a theory lying within or very near the onset of the conformal window, with the anomalous dimension of the fermionic condensate in the range $0.9 lesssim gamma_* lesssim 0.95$. The implications of our work for building a viable theory of strongly interacting dynamics beyond the standard model are discussed.
Taming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on larg e volumes. We compare with previous results, and extrapolate to thermodynamic limit when possible.
Recently $SU(2)$ Yang-Mills theory with one massless adjoint Dirac quark flavor emerges as a novel critical theory that can describe the evolution between a trivial insulator and a topological insulator in AIII class in $3+1$ dimensions. There are se veral classes of conjectured infrared dynamics for this theory. One possibility is that the theory undergoes spontaneous chiral symmetry breaking, with two massless Goldstone bosons (the scalar diquark and its antiparticle) in the infrared. Another scenario, which is suggested by previous lattice studies by Athenodorou et al., is that the IR sector of the theory is a strongly interacting conformal field theory as the quark mass vanishes. The most recent theoretical proposals argue for a case that in the infrared a composite fermion composed of two quarks and an antiquark becomes massless and non-interacting as the quark mass goes to zero, while other sectors are decoupled from this low-energy fermion. This work expands upon previous studies by including the composite fermion to investigate which of these three potential scenarios captures the infrared behavior of this theory.
242 - Ari J. Hietanen 2008
An SU(2) gauge theory with two fermions transforming under the adjoint representation of the gauge group may appear conformal or almost conformal in the infrared. We use lattice simulations to study the spectrum of this theory and present results on the masses of several gauge singlet states as a function of the physical quark mass determined through the axial Ward identity and find indications of a change from chiral symmetry breaking to a phase consistent with conformal behaviour at beta_L ~ 2. However, the measurement of the spectrum is not alone sufficient to decisively confirm the existence of conformal fixed point in this theory as we show by comparing to similar measurements with fundamental fermions. Based on the results we sketch a possible phase diagram of this lattice theory and discuss the applicability and importance of these results for the future measurement of the evolution of the coupling constant.
SU(2) gauge theory with a single fermion in the fundamental representation is a minimal non-Abelian candidate for the dark matter sector, which is presently missing from the standard model. Having only a single flavor provides a natural mechanism for stabilizing dark matter on cosmological timescales. Preliminary lattice results are presented and discussed in the context of dark matter phenomenology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا