ﻻ يوجد ملخص باللغة العربية
We present Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the source and lens stars for planetary microlensing event OGLE-2005-BLG-169, which confirm the relative proper motion prediction due to the planetary light curve signal observed for this event. This (and the companion Keck result) provide the first confirmation of a planetary microlensing signal, for which the deviation was only 2%. The follow-up observations determine the flux of the planetary host star in multiple passbands and remove light curve model ambiguity caused by sparse sampling of part of the light curve. This leads to a precise determination of the properties of the OGLE-2005-BLG-169Lb planetary system. Combining the constraints from the microlensing light curve with the photometry and astrometry of the HST/WFC3 data, we find star and planet masses of M_* = 0.69+- 0.02 M_solar and m_p = 14.1 +- 0.9 M_earth. The planetary microlens system is located toward the Galactic bulge at a distance of D_L = 4.1 +- 0.4 kpc, and the projected star-planet separation is a_perp = 3.5 +- 0.3 AU, corresponding to a semi-major axis of a = 4.0 (+2.2 -0.6) AU.
We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in microlensing event OGLE-2005-BLG-071. Precise (<1%) photometry at the peak of the event yields an extremely high signal-to-noise ratio detection of a de
We report a giant exoplanet discovery in the microlensing event OGLE-2017-BLG-1049, which is a planet-host star mass ratio of $q=9.53pm0.39times10^{-3}$ and has a caustic crossing feature in the Korea Microlensing Telescope Network (KMTNet) observati
We present microlensing planet OGLE-2017-BLG-0173Lb, with planet-host mass ratio either $qsimeq 2.5times 10^{-5}$ or $qsimeq 6.5times 10^{-5}$, the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, $Deltachi^2
Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interp
We report the discovery of the microlensing planet OGLE-2018-BLG-0740Lb. The planet is detected with a very strong signal of $Deltachi^2sim 4630$, but the interpretation of the signal suffers from two types of degeneracies. One type is caused by the