ﻻ يوجد ملخص باللغة العربية
Astrophysical sources are now observed by many different instruments at different wavelengths, from radio to high-energy gamma-rays, with an unprecedented quality. Putting all these data together to form a coherent view, however, is a very difficult task. Each instrument has its own data format, software and analysis procedure, which are difficult to combine. It is for example very challenging to perform a broadband fit of the energy spectrum of the source. The Multi-Mission Maximum Likelihood framework (3ML) aims to solve this issue, providing a common framework which allows for a coherent modeling of sources using all the available data, independent of their origin. At the same time, thanks to its architecture based on plug-ins, 3ML uses the existing official software of each instrument for the corresponding data in a way which is transparent to the user. 3ML is based on the likelihood formalism, in which a model summarizing our knowledge about a particular region of the sky is convolved with the instrument response and compared to the corresponding data. The user can choose between a frequentist analysis, and a Bayesian analysis. In the former, parameters of the model are optimized in order to obtain the best match to the data (i.e., the maximum of the likelihood). In the latter, the priors specified by the user are used to build the posterior distribution, which is then sampled with Markov Chain Monte Carlo or Multinest. Our implementation of this idea is very flexible, allowing the study of point sources as well as extended sources with arbitrary spectra. We will review the problem we aim to solve, the 3ML concepts and its innovative potential.
Gamma-ray observations ranging from hundreds of MeV to tens of TeV are a valuable tool for studying particle acceleration and diffusion within our galaxy. Supernova remnants, pulsar wind nebulae, and star-forming regions are the main particle acceler
We consider a sample of $82$ non-repeating FRBs detected at Parkes, ASKAP, CHIME and UTMOST each of which operates over a different frequency range and has a different detection criteria. Using simulations, we perform a maximum likelihood analysis to
We present a novel technique for estimating disk parameters (the centre and the radius) from its 2D image. It is based on the maximal likelihood approach utilising both edge pixels coordinates and the image intensity gradients. We emphasise the follo
We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search (CDMS~II) experiment using a maximum likelihood analysis. A background model is constructed using GEAN
We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilitie