ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Manipulation in a Quantum Chaotic Optical Fiber by Modifying its Geometry

100   0   0.0 ( 0 )
 نشر من قبل Sijo Joseph K.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of boundary deformation on the non-separable entanglement which appears in the classical elec- tromagnetic field is considered. A quantum chaotic billiard geometry is used to explore the influence of a mechanical modification of the optical fiber cross-sectional geometry on the production of non-separable entan- glement within classical fields. For the experimental realization of our idea, we propose an optical fiber with a cross section that belongs to the family of Robnik chaotic billiards. Our results show that a modification of the fiber geometry from a regular to a chaotic regime can enhance the transverse mode entanglement. Our proposal can be realized in a very simple experimental set-up which consists of a specially designed optical fiber where non-entangled light enters at the input end and entangled light propagates out at the output end after interacting with a fiber boundary that is known to generate chaotic behavior.



قيم البحث

اقرأ أيضاً

The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduce d density matrix, explicit expressions for the time-dependence of entanglement entropies, including the von Neumann entropy, are given. An appropriate re-scaling of time and the entropies by their saturation values leads a universal curve, independent of the interaction. The extension to the non-perturbative regime is performed using a recursively embedded perturbation theory to produce the full transition and the saturation values. The analytical results are found to be in good agreement with numerical results for random matrix computations and a dynamical system given by a pair of coupled kicked rotors.
We study a dissipative quantum mechanical model of the projective measurement of a qubit. We demonstrate how a correspondence limit, damped quantum oscillator can realise chaotic-like or periodic trajectories that emerge in sympathy with the projecti on of the qubit state, providing a model of the measurement process.
We study the quantum to classical transition in a chaotic system surrounded by a diffusive environment. The emergence of classicality is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the Renyi entropy has a transition from quantum to classical behavior that scales with $hbar^2_{rm eff}/D$, where $hbar_{rm eff}$ is the effective Planck constant and $D$ is the strength of the noise. However, it was recently shown that a different scaling law controls the quantum to classical transition when it is measured comparing the corresponding phase space distributions. We discuss here the meaning of both scalings in the precise definition of a frontier between the classical and quantum behavior. We also show that there are quantum coherences that the Renyi entropy is unable to detect which questions its use in the studies of decoherence.
The prediction of the response of a closed system to external perturbations is one of the central problems in quantum mechanics, and in this respect, the local density of states (LDOS) provides an in- depth description of such a response. The LDOS is the distribution of the overlaps squared connecting the set of eigenfunctions with the perturbed one. Here, we show that in the case of closed systems with classically chaotic dynamics, the LDOS is a Breit-Wigner distribution under very general perturbations of arbitrary high intensity. Consequently, we derive a semiclassical expression for the width of the LDOS which is shown to be very accurate for paradigmatic systems of quantum chaos. This Letter demonstrates the universal response of quantum systems with classically chaotic dynamics.
Time-delay signature (TDS) suppression of semiconductor lasers with external optical feedback is necessary to ensure the security of chaos-based secure communications. Here we numerically and experimentally demonstrate a technique to effectively supp ress the TDS of chaotic lasers using quantum noise. The TDS and dynamical complexity are quantified using the autocorrelation function and normalized permutation entropy at the feedback delay time, respectively. Quantum noise from quadrature fluctuations of vacuum state is prepared through balanced homodyne measurement. The effects of strength and bandwidth of quantum noise on chaotic TDS suppression and complexity enhancement are investigated numerically and experimentally. Compared to the original dynamics, the TDS of this quantum-noise improved chaos is suppressed up to 94% and the bandwidth suppression ratio of quantum noise to chaotic laser is 1:25. The experiment agrees well with the theory. The improved chaotic laser is potentially beneficial to chaos-based random number generation and secure communication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا