ﻻ يوجد ملخص باللغة العربية
The effect of boundary deformation on the non-separable entanglement which appears in the classical elec- tromagnetic field is considered. A quantum chaotic billiard geometry is used to explore the influence of a mechanical modification of the optical fiber cross-sectional geometry on the production of non-separable entan- glement within classical fields. For the experimental realization of our idea, we propose an optical fiber with a cross section that belongs to the family of Robnik chaotic billiards. Our results show that a modification of the fiber geometry from a regular to a chaotic regime can enhance the transverse mode entanglement. Our proposal can be realized in a very simple experimental set-up which consists of a specially designed optical fiber where non-entangled light enters at the input end and entangled light propagates out at the output end after interacting with a fiber boundary that is known to generate chaotic behavior.
The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduce
We study a dissipative quantum mechanical model of the projective measurement of a qubit. We demonstrate how a correspondence limit, damped quantum oscillator can realise chaotic-like or periodic trajectories that emerge in sympathy with the projecti
We study the quantum to classical transition in a chaotic system surrounded by a diffusive environment. The emergence of classicality is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the
The prediction of the response of a closed system to external perturbations is one of the central problems in quantum mechanics, and in this respect, the local density of states (LDOS) provides an in- depth description of such a response. The LDOS is
Time-delay signature (TDS) suppression of semiconductor lasers with external optical feedback is necessary to ensure the security of chaos-based secure communications. Here we numerically and experimentally demonstrate a technique to effectively supp