ﻻ يوجد ملخص باللغة العربية
We study the dynamics of networks with inhibitory and excitatory leaky-integrate-and-fire neurons with short-term synaptic plasticity in the presence of depressive and facilitating mechanisms. The dynamics is analyzed by a Heterogeneous Mean-Field approximation, that allows to keep track of the effects of structural disorder in the network. We describe the complex behavior of different classes of excitatory and inhibitory components, that give rise to a rich dynamical phase-diagram as a function of the fraction of inhibitory neurons. By the same mean field approach, we study and solve a global inverse problem: reconstructing the degree probability distributions of the inhibitory and excitatory components and the fraction of inhibitory neurons from the knowledge of the average synaptic activity field. This approach unveils new perspectives in the numerical study of neural network dynamics and in the possibility of using these models as testbed for the analysis of experimental data.
We study a network of spiking neurons with heterogeneous excitabilities connected via inhibitory delayed pulses. For globally coupled systems the increase of the inhibitory coupling reduces the number of firing neurons by following a Winner Takes All
We investigate the dynamical role of inhibitory and highly connected nodes (hub) in synchronization and input processing of leaky-integrate-and-fire neural networks with short term synaptic plasticity. We take advantage of a heterogeneous mean-field
We investigated the influence of efficacy of synaptic interaction on firing synchronization in excitatory neuronal networks. We found spike death phenomena, namely, the state of neurons transits from limit cycle to fixed point or transient state. The
We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stab
We introduce a model of generalized Hebbian learning and retrieval in oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. Recent experiments have shown that synaptic plasticity depends on spike timing, especi