ﻻ يوجد ملخص باللغة العربية
Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks.
A key ingredient of quantum repeaters is entanglement distillation, i.e., the generation of high-fidelity entangled qubits from a larger set of pairs with lower fidelity. Here, we present entanglement distillation protocols based on qubit couplings t
Hybrid quantum information processing combines the advantages of discrete and continues variable protocols by realizing protocols consisting of photon counting and homodyne measurements. However, the mode structure of pulsed sources and the propertie
Measures of entanglement can be employed for the analysis of numerous quantum information protocols. Due to computational convenience, logarithmic negativity is often the choice in the case of continuous variable systems. In this work, we analyse a c
Recent theoretical and experiments have explored the use of entangled photons as a spectroscopic probe of material systems. We develop here a theoretical description for entropy production in the scattering of an entangled biphoton state within an op
The measurement of parameters that describe kinetic processes is important in the study of molecular interactions. It enables a deeper understanding of the physical mechanisms underlying how different biological entities interact with each other, suc