ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy density above a resonant metamaterial in the GHz: an alternative to near-field thermal emission detection

129   0   0.0 ( 0 )
 نشر من قبل Karl Joulain
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Karl Joulain




اسأل ChatGPT حول البحث

This paper proposes an experiment to easily detect radiative heat transfer in the microwave range. Following an idea given by Pendry more than a decade ago [1], we show that a 3D array of tungsten 2micron radius wires with a 1 cm period makes a low cost material exhibiting a surface plasmon in the microwave range around 2.9 GHz. Such a heated material should exhibit an emission peak near the plasmon frequency well above ambient emission. Analysis of the signal detected in the near-field should also be a tool to analyze how homogenization theory applies when the distance to the material is of the order of the metamaterial period. It could also be give a model to non-local dielectric properties in the same conditions.



قيم البحث

اقرأ أيضاً

A theory is presented to describe the heat-flux radiated in near-field regime by a set of interacting nanoemitters held at different temperatures in vacuum or above a solid surface. We show that this thermal energy can be focused and even amplified i n spots that are much smaller than those obtained with a single thermal source. We also demonstrate the possibility to locally pump heat using specific geometrical configurations. These many body effects pave the way to a multi-tip near-field scanning thermal microscopy which could find broad applications in the fields of nanoscale thermal management, heat-assisted data recording, nanoscale thermal imaging, heat capacity measurements and infrared spectroscopy of nano-objects.
Energy harvesting is a modern concept which makes dissipated heat useful by transferring thermal energy to other excitations. Most of the existing principles for energy harvesting are realized in systems which are heated continuously, for example gen erating DC voltage in thermoelectric devices. Here we present the concept of high-frequency energy harvesting where the dissipated heat in a sample excites resonant magnons in a 5-nm thick ferromagnetic metal layer. The sample is excited by femtosecond laser pulses with a repetition rate of 10 GHz which results in temperature modulation at the same frequency with amplitude ~0.1 K. The alternating temperature excites magnons in the ferromagnetic nanolayer which are detected by measuring the net magnetization precession. When the magnon frequency is brought onto resonance with the optical excitation, a 12-fold increase of the amplitude of precession indicates efficient resonant heat transfer from the lattice to coherent magnons. The demonstrated principle may be used for energy harvesting in various nanodevices operating at GHz and sub-THz frequency ranges.
Spin and orbital angular momentum of light plays a central role in quantum nanophotonics as well as topological electrodynamics. Here, we show that the thermal radiation from finite-sized bodies comprising of nonreciprocal magneto-optical materials c an exert a spin torque even in global thermal equilibrium. Moving beyond the paradigm of near-field heat transfer, we calculate near-field radiative angular momentum transfer between finite-sized nonreciprocal objects by combining Rytovs fluctuational electrodynamics with the theory of optical angular momentum. We prove that a single magneto-optical cubic particle in non-equilibrium with its surroundings experiences a torque in the presence of an applied magnetic field (T-symmetry breaking). Furthermore, even in global thermal equilibrium, two particles with misaligned gyrotropic axes experience equal magnitude torques with opposite signs which tend to align their gyrotropic axes parallel to each other. Our results are universally applicable to semiconductors like InSb (magneto-plasmas) as well as Weyl semi-metals which exhibit the anomalous Hall effect (gyrotropy) at infrared frequencies. Our work paves the way towards near-field angular momentum transfer mediated by thermal fluctuations for nanoscale devices.
Energy can be transferred in a radiative manner between objects with different electrical fluctuations. In this work, we consider near-field energy transfer between two separated parallel plates: one is graphene-covered boron nitride and the other a magneto-optic medium. We first study the energy transfer between the two plates having the same temperature. An electric current through the graphene gives rise to nonequilibrium fluctuations and induces the energy transfer. Both the magnitude and direction of the energy flux can be controlled by the electric current and an in-plane magnetic field in the magneto-optic medium. This is due to the interplay between nonreciprocal effective photonic temperature in graphene and nonreciprocal surface modes in the magneto-optic plate. Furthermore, we report that a tunable thermoelectric current can be generated in the graphene in the presence of a temperature difference between the two plates.
We suggest a broadband optical unidirectional arrayed nanoantenna consisting of equally spaced nanorods of gradually varying length. Each nanorod can be driven by near-field quantum emitters radiating at different frequencies or, according to the rec iprocity principle, by an incident light at the same frequency. Broadband unidirectional emission and reception characteristics of the nano-antenna open up novel opportunities for subwavelength light manipulation and quantum communication, as well as for enhancing the performance of photoactive devices such as photovoltaic detectors, light-emitting diodes, and solar cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا