ترغب بنشر مسار تعليمي؟ اضغط هنا

Fragile charge order in the non-superconducting ground state of the underdoped high temperature superconductors

308   0   0.0 ( 0 )
 نشر من قبل Suchitra Sebastian
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3O6+x. Here we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveal similar Fermi surface properties to YBa2Cu3O6+x, despite an absence of charge order signatures in the same spectroscopic techniques such as x-ray diffraction that revealed signatures of charge order in YBa2Cu3O6+x. Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional symmetry, and/or its occurrence as a subsidiary to more robust underlying electronic correlations.



قيم البحث

اقرأ أيضاً

By re-examining recently-published data from angle-resolved photoemission spectroscopy we demonstrate that, in the superconducting region of the phase diagram, the pseudogap ground state is an arc metal. This scenario is consistent with results from Raman spectroscopy, specific heat and NMR. In addition, we propose an explanation for the Fermi pockets inferred from quantum oscillations in terms of a pseudogapped bilayer Fermi surface.
The presence of different electronic orders other than superconductivity populating the phase diagram of cuprates suggests that they might be the key to disclose the mysteries of this class of materials. In particular charge order in the form of char ge density waves (CDW), i.e., the incommensurate modulation of electron density in the CuO$_2$ planes, is ubiquitous across different families and presents a clear interplay with superconductivity. Until recently, CDW had been found to be confined inside a rather small region of the phase diagram, below the pseudogap temperature and the optimal doping. This occurrence might shed doubts on the possibility that such low temperature phenomenon actually rules the properties of cuprates either in the normal or in the superconducting states. However, recent resonant X-ray scattering (RXS) experiments are overturning this paradigm. It results that very short-ranged charge modulations permeate a much wider region of the phase diagram, coexisting with CDW at lower temperatures and persisting up to temperatures well above the pseudogap opening. Here we review the characteristics of these high temperature charge modulations, which are present in several cuprate families, with similarities and differences. A particular emphasis is put on their dynamical character and on their coupling to lattice and magnetic excitations, properties that can be determined with high resolution resonant inelastic x-ray scattering (RIXS).
This paper discusses the synthesis, characterization, and comprehensive study of Ba-122 single crystals with various substitutions and various $T_c$. The paper uses five complementary techniques to obtain a self-consistent set of data on the supercon ducting properties of Ba-122. A major conclusion of the authors work is the coexistence of two superconducting condensates differing in the electron-boson coupling strength. The two gaps that develop in distinct Fermi surface sheets are nodeless in the $k_xk_y$-plane and exhibit s-wave symmetry, the two-band model represents a sufficient data description tool. A moderate interband coupling and a considerable Coulomb repulsion in the description of the two-gap superconducting state of barium pnictides favor the $s^{++}$-model.
A central question in the underdoped cuprates pertains to the nature of the pseudogap ground state. A conventional metallic ground state of the pseudogap region has been argued to host quantum oscillations upon destruction of the superconducting orde r parameter by modest magnetic fields. Here we use low applied measurement currents and millikelvin temperatures on ultra-pure single crystals of underdoped YBa$_2$Cu$_3$O$_{6+x}$ to unearth an unconventional quantum vortex matter ground state characterized by vanishing electrical resistivity, magnetic hysteresis, and non-ohmic electrical transport characteristics beyond the highest laboratory accessible static fields. A new model of the pseudogap ground state is now required to explain quantum oscillations that are hosted by the bulk quantum vortex matter state without experiencing sizeable additional damping in the presence of a large maximum superconducting gap; possibilities include a pair density wave.
144 - T. Wu , H. Mayaffre , S. Kramer 2013
Evidence is mounting that charge order competes with superconductivity in high Tc cuprates. Whether this has any relationship to the pairing mechanism is unknown since neither the universality of the competition nor its microscopic nature has been es tablished. Here using nuclear magnetic resonance, we show that, similar to La214, charge order in YBCO has maximum strength inside the superconducting dome, at doping levels p = 0.11 - 0.12.We further show that the overlap of halos of incipient charge order around vortex cores, similar to those visualised in Bi2212, can explain the threshold magnetic field at which long-range charge order emerges. These results reveal universal features of a competition in which charge order and superconductivity appear as joint instabilities of the same normal state, whose relative balance can be field-tuned in the vortex state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا