ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cerny conjecture and 1-contracting automata

214   0   0.0 ( 0 )
 نشر من قبل Henk Don
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Henk Don




اسأل ChatGPT حول البحث

A deterministic finite automaton is synchronizing if there exists a word that sends all states of the automaton to the same state. v{C}erny conjectured in 1964 that a synchronizing automaton with $n$ states has a synchronizing word of length at most $(n-1)^2$. We introduce the notion of aperiodically $1-$contracting automata and prove that in these automata all subsets of the state set are reachable, so that in particular they are synchronizing. Furthermore, we give a sufficient condition under which the v{C}erny conjecture holds for aperiodically $1-$contracting automata. As a special case, we prove some results for circular automata.



قيم البحث

اقرأ أيضاً

64 - Henk Don , Hans Zantema 2017
In this paper, we show that every D3-directing CNFA can be mapped uniquely to a DFA with the same synchronizing word length. This implies that v{C}ernys conjecture generalizes to CNFAs and that the general upper bound for the length of a shortest D3- directing word is equal to the Pin-Frankl bound for DFAs. As a second consequence, for several classes of CNFAs sharper bounds are established. Finally, our results allow us to detect all critical CNFAs on at most 6 states. It turns out that only very few critical CNFAs exist.
88 - Marino Romero 2016
We use a weight-preserving, sign-reversing involution to find a combinatorial expansion of $Delta_{e_k} e_n$ at $q=1$ in terms of the elementary symmetric function basis. We then use a weight-preserving bijection to prove the Delta Conjecture at $q=1 $. The method of proof provides a variety of structures which can compute the inner product of $Delta_{e_k} e_n|_{q=1}$ with any symmetric function.
Controller synthesis for general linear temporal logic (LTL) objectives is a challenging task. The standard approach involves translating the LTL objective into a deterministic parity automaton (DPA) by means of the Safra-Piterman construction. One o f the challenges is the size of the DPA, which often grows very fast in practice, and can reach double exponential size in the length of the LTL formula. In this paper we describe a single exponential translation from limit-deterministic Buchi automata (LDBA) to DPA, and show that it can be concatenated with a recent efficient translation from LTL to LDBA to yield a double exponential, enquote{Safraless} LTL-to-DPA construction. We also report on an implementation, a comparison with the SPOT library, and performance on several sets of formulas, including instances from the 2016 SyntComp competition.
60 - Arno Pauly 2018
We introduce a way to parameterize automata and games on finite graphs with natural numbers. The parameters are accessed essentially by allowing counting down from the parameter value to 0 and branching depending on whether 0 has been reached. The ma in technical result is that in games, a player can win for some values of the parameters at all, if she can win for some values below an exponential bound. For many winning conditions, this implies decidability of any statements about a player being able to win with arbitrary quantification over the parameter values. While the result seems broadly applicable, a specific motivation comes from the study of chains of strategies in games. Chains of games were recently suggested as a means to define a rationality notion based on dominance that works well with quantitative games by Bassett, Jecker, P., Raskin and Van den Boogard. From the main result of this paper, we obtain generalizations of their decidability results with much simpler proofs. As both a core technical notion in the proof of the main result, and as a notion of potential independent interest, we look at boolean functions defined via graph game forms. Graph game forms have properties akin to monotone circuits, albeit are more concise. We raise some open questions regarding how concise they are exactly, which have a flavour similar to circuit complexity. Answers to these questions could improve the bounds in the main theorem.
Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by w eighted automata, where the semantics of quantifiers is used both as arithmetical operations and, in the boolean case, as quantification. Already in 2001, B. Courcelle, J.Makowsky and U. Rotics have introduced a formalism for graph parameters definable in Monadic Second order Logic, here called MSOLEVAL with values in a ring R. Their framework can be easily adapted to semirings S. This formalism clearly separates the logical part from the arithmetical part and also applies to word functions. In this paper we give two proofs that RMSOL and MSOLEVAL with values in S have the same expressive power over words. One proof shows directly that MSOLEVAL captures the functions recognizable by weighted automata. The other proof shows how to translate the formalisms from one into the other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا