ﻻ يوجد ملخص باللغة العربية
The recent discovery by Bachetti et al. (2014) of a pulsar in M82 that can reach luminosities of up to 10^40 ergs s^-1, a factor of ~100 the Eddington luminosity for a 1.4 Msol compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in the light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.5-8 keV X-ray emission from this source from 15 years of Chandra observations. We fit the Chandra spectra of the pulsar with a power-law model and a disk black body model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where 4/19 observations have a pile-up fraction >10%, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (L_X>10^39 ergs s^-1) is Gamma=1.33+/-0.15. For the disk black body model, the average temperature is T=3.24+/-0.65 keV, consistent with other luminous X-ray pulsars. We also investigated the inclusion of a soft excess component and spectral break, finding that the spectra are also consistent with these features common to luminous X-ray pulsars. In addition, we present spectral analysis from NuSTAR over the 3-50 keV range where we have isolated the pulsed component. We find that the pulsed emission in this band is best fit by a power-law with a high-energy cut-off, where Gamma=0.6+/-0.3 and E_C=14^{+5}_{-3} keV. While the pulsar has previously been identified as a transient, we find from our longer-baseline study that it has been remarkably active over the 15-year period, where for 9/19 (47%) observations that we analyzed, the pulsar appears to be emitting at a luminosity in excess of 10^39 ergs s^-1, greater than 10 times its Eddington limit.
We have analysed the spectra and the variability of individual X-ray sources in the M-81 field using data from the available ROSAT-PSPC and ROSAT-HRI observations of this nearby spiral galaxy. Here we present the results on the second brightest sourc
We present the first coordinated soft and hard 0.3-80 keV X-ray campaign of the extragalactic supernova SN 2014C in the first $sim$2307 d of its evolution. SN 2014C initially appeared to be an ordinary type Ib explosion but evolved into a strongly-in
Previous X-ray spectral analysis has revealed an increasing number of AGNs with high accretion rates where an outflow with a mildly relativistic velocity originates from the inner accretion disk. Here we report the detection of a new ultra-fast outfl
We report variability of the X-ray source, X-7, in NGC 6946, during a 60 ksec Chandra observation when the count rate decreased by a factor of ~1.5 in ~5000 secs. Spectral fitting of the high and low count rate segments of the light curve reveal that
We report on detailed analysis of the hard X-ray and GeV gamma-ray spectra of LS 5039, one of the brightest gamma-ray binary system in the Galaxy. The NuSTAR observation covering its entire orbit in 2016 allowed us for the first time to study the orb