ﻻ يوجد ملخص باللغة العربية
It is well known that Sparse PCA (Sparse Principal Component Analysis) is NP-hard to solve exactly on worst-case instances. What is the complexity of solving Sparse PCA approximately? Our contributions include: 1) a simple and efficient algorithm that achieves an $n^{-1/3}$-approximation; 2) NP-hardness of approximation to within $(1-varepsilon)$, for some small constant $varepsilon > 0$; 3) SSE-hardness of approximation to within any constant factor; and 4) an $expexpleft(Omegaleft(sqrt{log log n}right)right)$ (quasi-quasi-polynomial) gap for the standard semidefinite program.
We consider the problem of maximizing the spread of influence in a social network by choosing a fixed number of initial seeds, formally referred to as the influence maximization problem. It admits a $(1-1/e)$-factor approximation algorithm if the inf
We consider the following multi-component sparse PCA problem: given a set of data points, we seek to extract a small number of sparse components with disjoint supports that jointly capture the maximum possible variance. These components can be comput
We introduce the combinatorial optimization problem Time Disjoint Walks (TDW), which has applications in collision-free routing of discrete objects (e.g., autonomous vehicles) over a network. This problem takes as input a digraph $G$ with positive in
Sparse principal component analysis (PCA) and sparse canonical correlation analysis (CCA) are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimiz
We present a probabilistic algorithm to compute the product of two univariate sparse polynomials over a field with a number of bit operations that is quasi-linear in the size of the input and the output. Our algorithm works for any field of character