ترغب بنشر مسار تعليمي؟ اضغط هنا

Future Constraints on Angle-Dependent Non-Gaussianity from Large Radio Surveys

219   0   0.0 ( 0 )
 نشر من قبل Alvise Raccanelli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate how well future large-scale radio surveys could measure different shapes of primordial non-Gaussianity; in particular we focus on angle-dependent non-Gaussianity arising from primordial anisotropic sources, whose bispectrum has an angle dependence between the three wavevectors that is characterized by Legendre polynomials $mathcal{P}_L$ and expansion coefficients $c_L$. We provide forecasts for measurements of galaxy power spectrum, finding that Large-Scale Structure (LSS) data could allow measurements of primordial non-Gaussianity competitive or improving upon current constraints set by CMB experiments, for all the shapes considered. We argue that the best constraints will come from the possibility to assign redshift information to radio galaxy surveys, and investigate a few possible scenarios for the EMU and SKA surveys. A realistic (futuristic) modeling could provide constraints of $f_{rm NL}^{rm loc} approx 1 (0.5)$ for the local shape, $f_{rm NL}$ of $mathcal{O}(10) (mathcal{O}(1))$ for the orthogonal, equilateral and folded shapes, and $c_{L=1} approx 80 (2)$, $c_{L=2} approx 400 (10)$ for angle-dependent non-Gaussianity. The more futuristic forecasts show the potential of LSS analyses to considerably improve current constraints on non-Gaussianity, and so on models of the primordial Universe. Finally, we find the minimum requirements that would be needed to reach $sigma(c_{L=1})=10$, which can be considered as a typical (lower) value predicted by some (inflationary) models.



قيم البحث

اقرأ أيضاً

We place new constraints on the primordial local non-Gaussianity parameter f_NL using recent Cosmic Microwave Background anisotropy and galaxy clustering data. We model the galaxy power spectrum according to the halo model, accounting for a scale dep endent bias correction proportional to f_NL/k^2. We first constrain f_NL in a full 13 parameters analysis that includes 5 parameters of the halo model and 7 cosmological parameters. Using the WMAP7 CMB data and the SDSS DR4 galaxy power spectrum, we find f_NL=171pm+140 at 68% C.L. and -69<f_NL<+492 at 95% C.L.. We discuss the degeneracies between f_NL and other cosmological parameters. Including SN-Ia data and priors on H_0 from Hubble Space Telescope observations we find a stronger bound: -35<f_NL<+479 at 95% C.L.. We also fit the more recent SDSS DR7 halo power spectrum data finding, for a Lambda-CDM+f_NL model, f_NL=-93pm128 at 68% C.L. and -327<f_{NL}<+177 at 95% C.L.. We finally forecast the constraints on f_NL from future surveys as EUCLID and from CMB missions as Planck showing that their combined analysis could detect f_NLsim 5.
We study the constraining power on primordial non-Gaussianity of future surveys of the large-scale structure of the Universe for both near-term surveys (such as the Dark Energy Survey - DES) as well as longer term projects such as Euclid and WFIRST. Specifically we perform a Fisher matrix analysis forecast for such surveys, using DES-like and Euclid-like configurations as examples, and take account of any expected photometric and spectroscopic data. We focus on two-point statistics and we consider three observables: the 3D galaxy power spectrum in redshift space, the angular galaxy power spectrum, and the projected weak-lensing shear power spectrum. We study the effects of adding a few extra parameters to the basic LCDM set. We include the two standard parameters to model the current value for the dark energy equation of state and its time derivative, w_0, w_a, and we account for the possibility of primordial non-Gaussianity of the local, equilateral and orthogonal types, of parameter fNL and, optionally, of spectral index n_fNL. We present forecasted constraints on these parameters using the different observational probes. We show that accounting for models that include primordial non-Gaussianity does not degrade the constraint on the standard LCDM set nor on the dark-energy equation of state. By combining the weak lensing data and the information on projected galaxy clustering, consistently including all two-point functions and their covariance, we find forecasted marginalised errors sigma (fNL) ~ 3, sigma (n_fNL) ~ 0.12 from a Euclid-like survey for the local shape of primordial non-Gaussianity, while the orthogonal and equilateral constraints are weakened for the galaxy clustering case, due to the weaker scale-dependence of the bias. In the lensing case, the constraints remain instead similar in all configurations.
We forecast combined future constraints from the cosmic microwave background and large-scale structure on the models of primordial non-Gaussianity. We study the generalized local model of non-Gaussianity, where the parameter f_NL is promoted to a fun ction of scale, and present the principal component analysis applicable to an arbitrary form of f_NL(k). We emphasize the complementarity between the CMB and LSS by using Planck, DES and BigBOSS surveys as examples, forecast constraints on the power-law f_NL(k) model, and introduce the figure of merit for measurements of scale-dependent non-Gaussianity.
A convincing detection of primordial non-Gaussianity in the cosmic background radiation (CMB) is essential to probe the physics of the early universe. Since a single statistical estimator can hardly be suitable to detect the various possible forms of non-Gaussianity, it is important to employ different statistical indicators to study non-Gaussianity of CMB. This has motivated the proposal of a number statistical tools, including two large-angle indicators based on skewness and kurtosis of spherical caps of CMB sky-sphere. Although suitable to detect fairly large non-Gaussianity they are unable to detect non-Gaussianity within the Planck bounds, and exhibit power spectra with undesirable oscillation pattern. Here we use several thousands simulated CMB maps to examine interrelated problems regarding advances of these spherical patches procedures. We examine whether a change in the choice of the patches could enhance the sensitivity of the procedures well enough to detect large-angle non-Gaussianity within the Planck bounds. To this end, a new statistical procedure with non-overlapping cells is proposed and its capability is established. We also study whether this new procedure is capable to smooth out the undesirable oscillation pattern in the skewness and kurtosis power spectra of the spherical caps procedure. We show that the new procedure solves this problem, making clear this unexpected power spectra pattern does not have a physical origin, but rather presumably arises from the overlapping obtained with the spherical caps approach. Finally, we make a comparative analysis of this new statistical procedure with the spherical caps routine, determine their lower bounds for non-Gaussianity detection, and make apparent their relative strength and sensitivity.
We derive robust constraints on primordial non-Gaussianity (PNG) using the clustering of 800,000 photometric quasars from the Sloan Digital Sky Survey in the redshift range $0.5<z<3.5$. These measurements rely on the novel technique of {it extended m ode projection} to control the impact of spatially-varying systematics in a robust fashion, making use of blind analysis techniques. This allows the accurate measurement of quasar halo bias at the largest scales, while discarding as little as possible of the data. The standard local-type PNG parameters $f_mathrm{NL}$ and $g_mathrm{NL}$ both imprint a $k^{-2}$ scale-dependent effect in the bias. Constraining these individually, we obtain $-49<f_mathrm{NL}<31$ and $-2.7times10^5<g_mathrm{NL}<1.9times10^5$, while their joint constraints lead to $-105<f_mathrm{NL}<72$ and $-4.0times10^5<g_mathrm{NL}<4.9times10^5$ (all at 95% CL) . Introducing a running parameter $n_{f_mathrm{NL}}$ to constrain $b(k) propto k^{-2+n_{f_mathrm{NL}}}$ and a generalised PNG amplitude $tilde{f}_mathrm{NL}$, we obtain $-45.5 exp({3.7, n_{f_mathrm{NL}}}) < tilde{f}_mathrm{NL} < 34.4 exp({3.3, n_{f_mathrm{NL}}})$ at 95% CL. These results incorporate uncertainties in the cosmological parameters, redshift distributions, shot noise, and the bias prescription used to relate the quasar clustering to the underlying dark matter. These are the strongest constraints obtained to date on PNG using a single population of large-scale structure tracers, and are already at the level of pre-{it Planck} constraints from the cosmic microwave background. A conservative forecast for a {it Large Synoptic Survey Telescope}-like survey incorporating mode projection yields $sigma(f_mathrm{NL}) sim 5$ -- competitive with the {it Planck} result -- highlighting the power of upcoming large scale structure surveys to probe the initial conditions of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا