ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Tests of Particle Flow Calorimetry

153   0   0.0 ( 0 )
 نشر من قبل Felix Sefkow
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precision physics at future colliders requires highly granular calorimeters to support the Particle Flow Approach for event reconstruction. This article presents a review of about 10 - 15 years of R&D, mainly conducted within the CALICE collaboration, for this novel type of detector. The performance of large scale prototypes in beam tests validate the technical concept of particle flow calorimeters. The comparison of test beam data with simulation, of e.g. hadronic showers, supports full detector studies and gives deeper insight into the structure of hadronic cascades than was possible previously.



قيم البحث

اقرأ أيضاً

191 - Jose Repond 2011
This talk reviews the development of imaging calorimeters for the purpose of applying Particle Flow Algorithms (PFAs) to the measurement of hadronic jets at a future lepton collider. After a short introduction, the current status of PFA developments is presented, followed by a review of the major developments in electromagnetic and hadronic calorimetry.
A fiber detector concept is suggested allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occuppancy. The fibers should be radiation hard for 1 Mrad/year. Corresponding prototypes have been b uild and tested at a 3 GeV electron beam at DESY. Preliminary results of these tests indicate that the design goal for the detector is reached.
193 - Sebastian White 2013
In planning for the Phase II upgrades of CMS and ATLAS major considerations are: 1)being able to deal with degradation of tracking and calorimetry up to the radiation doses to be expected with an integrated luminosity of 3000 $fb^{-1}$ and 2)maintain ing physics performance at a pileup level of ~140. Here I report on work started within the context of the CMS Forward Calorimetry Task Force and continuing in an expanded CERN RD52 R$&$D program integrating timing (i.e. measuring the time-of-arrival of physics objects) as a potential tool for pileup mitigation and ideas for Forward Calorimetry. For the past 4 years our group has focused on precision timing at the level of 10-20 picoseconds in an environment with rates of $~10^6-10^7$ Hz/$cm^2 $ as is appropriate for the future running of the LHC (HL-LHC era). A time resolution of 10-20 picoseconds is one of the few clear criteria for pileup mitigation at the LHC, since the interaction time of a bunch crossing has an rms of 170 picosec. While work on charged particle timing in other contexts (i.e. ALICE R$&$D) is starting to approach this precision, there have been essentially no technologies that can sustain performance at these rates. I will present results on a tracker we developed within the DOE Advanced Detector R$&$D program which is now meeting these requirements. I will also review some results from Calorimeter Projects developed within our group (PHENIX EMCAL and ATLAS ZDC) which achieved calorimeter timing precision< 100 picoseconds.
154 - C. Adloff , J. Blaha , S. Cap 2011
The recent progress in R&D of the Micromegas detectors for hadronic calorimetry including new engineering-technical solutions, electronics development, and accompanying simulation studies with emphasis on the comparison of the physics performance of the analog and digital readout is described. The developed prototypes are with 2 bit digital readout to exploit the Micromegas proportional mode and thus improve the calorimeter linearity. In addition, measurements of detection efficiency, hit multiplicity, and energy shower profiles obtained during the exposure of small size prototypes to radioactive source quanta, cosmic particles and accelerator beams are reported. Eventually, the status of a large scale chamber (1{times}1 m2) are also presented with prospective towards the construction of a 1 m3 digital calorimeter consisting of 40 such chambers.
384 - Jose Repond 2014
The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Fl ow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 x 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا