ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground Tests of Einsteins Equivalence Principle: From Lab-based to 10-m Atomic Fountains

171   0   0.0 ( 0 )
 نشر من قبل Dennis Schlippert
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To date, no framework combining quantum field theory and general relativity and hence unifying all four fundamental interactions, exists. Violations of the Einsteins equivalence principle (EEP), being the foundation of general relativity, may hold the key to a theory of quantum gravity. The universality of free fall (UFF), which is one of the three pillars of the EEP, has been extensively tested with classical bodies. Quantum tests of the UFF, e.g. by exploiting matter wave interferometry, allow for complementary sets of test masses, orders of magnitude larger test mass coherence lengths and investigation of spin-gravity coupling. We review our recent work towards highly sensitive matter wave tests of the UFF on ground. In this scope, the first quantum test of the UFF utilizing two different chemical elements, Rb-87 and K-39, yielding an Eotvos ratio $eta_{,text{Rb,K}}=(0.3pm 5.4)times 10^{-7}$ has been performed. We assess systematic effects currently limiting the measurement at a level of parts in $10^8$ and finally present our strategies to improve the current state-of-the-art with a test comparing the free fall of rubidium and ytterbium in a very long baseline atom interferometry setup. Here, a 10 m baseline combined with a precise control of systematic effects will enable a determination of the Eotvos ratio at a level of parts in $10^{13}$ and beyond, thus reaching and overcoming the performance limit of the best classical tests.



قيم البحث

اقرأ أيضاً

137 - Albert Roura 2015
Atom interferometry tests of universality of free fall based on the differential measurement of two different atomic species provide a useful complement to those based on macroscopic masses. However, when striving for the highest possible sensitiviti es, gravity gradients pose a serious challenge. Indeed, the relative initial position and velocity for the two species need to be controlled with extremely high accuracy, which can be rather demanding in practice and whose verification may require rather long integration times. Furthermore, in highly sensitive configurations gravity gradients lead to a drastic loss of contrast. These difficulties can be mitigated by employing wave packets with narrower position and momentum widths, but this is ultimately limited by Heisenbergs uncertainty principle. We present a novel scheme that simultaneously overcomes the loss of contrast and the initial co-location problem. In doing so, it circumvents the fundamental limitations due to Heisenbergs uncertainty principle and eases the experimental realization by relaxing the requirements on initial co-location by several orders of magnitude.
The detection of the high-energy ($sim290$ TeV) neutrino coincident with the flaring blazar TXS 0506+056, the first and only $3sigma$ neutrino-source association to date, provides new, multimessenger tests of the weak equivalence principle (WEP) and Lorentz invariance. Assuming that the flight time difference between the TeV neutrino and gamma-ray photons from the blazar flare is mainly caused by the gravitational potential of the Laniakea supercluster of galaxies, we show that the deviation from the WEP for neutrinos and photons is conservatively constrained to have an accuracy of $10^{-6}-10^{-7}$, which is 3--4 orders of magnitude better than previous results placed by MeV neutrinos from supernova 1987A. In addition, we demonstrate that the association of the TeV neutrino with the blazar flare sets limits on the energy scales of quantum gravity for both linear and quadratic violations of Lorentz invariance (LIV) to $E_{rm QG, 1}>3.2times10^{15}-3.7times10^{16}$ GeV and $E_{rm QG, 2}>4.0times10^{10}-1.4times10^{11}$ GeV. These improve previous limits on both linear and quadratic LIV energy scales in neutrino propagation by 5--7 orders of magnitude.
Matter-wave interferometers utilizing different isotopes or chemical elements intrinsically have different sensitivities, and the analysis tools available until now are insufficient for accurately estimating the atomic phase difference under many exp erimental conditions. In this work, we describe and demonstrate two new methods for extracting the differential phase between dual-species atom interferometers for precise tests of the weak equivalence principle. The first method is a generalized Bayesian analysis, which uses knowledge of the system noise to estimate the differential phase based on a statistical model. The second method utilizes a mechanical accelerometer to reconstruct single-sensor interference fringes based on measurements of the vibration-induced phase. An improved ellipse-fitting algorithm is also implemented as a third method for comparison. These analysis tools are investigated using both numerical simulations and experimental data from simultaneous $^{87}$Rb and $^{39}$K interferometers, and both new techniques are shown to produce bias-free estimates of the differential phase. We also report observations of phase correlations between atom interferometers composed of different chemical species. This correlation enables us to reject common-mode vibration noise by a factor of 730, and to make preliminary tests of the weak equivalence principle with a sensitivity of $1.6 times 10^{-6}$ per measurement with an interrogation time of $T = 10$ ms. We study the level of vibration rejection by varying the temporal overlap between interferometers in a symmetric timing sequence. Finally, we discuss the limitations of the new analysis methods for future applications of differential atom interferometry.
We report here the results of operation of a torsion balance with a period of $sim 1.27 times 10^4$ s. The analysis of data collected over a period of $sim$115 days shows that the difference in the accelerations towards the Galactic Center of test bo dies made of aluminum and quartz was $(0.61 pm 1.27) times 10^{-15} , mathrm{ m , s}^{-2}$. This sets a bound on the violation of the equivalence principle by forces exerted by Galactic dark matter which is expressed by the Eotvos parameter $eta_{DM} = (1.32 pm 2.68) times 10^{-5}$, a significant improvement upon earlier bounds.
We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculat ions which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. We limit Lorentz violation for electrons at the level of $10^{-17}$, matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and improve bounds on gravitational redshift anomalies for electrons by 2 orders of magnitude, to $10^{-8}$. With some enhancements, our experiment may be sensitive to Lorentz violation at the level of $9times 10^{-20}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا