ترغب بنشر مسار تعليمي؟ اضغط هنا

Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba$_3$CoSb$_2$O$_9$

145   0   0.0 ( 0 )
 نشر من قبل Jie Ma
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular lattice antiferromagnet Ba$_3$CoSb$_2$O$_9$. Besides confirming that the Co$^{2+}$ magnetic moments lie in the ab plane for zero magnetic field, we determine all the exchange parameters of the minimal quasi-2D spin Hamiltonian, which confirms that Ba$_3$CoSb$_2$O$_9$ is an almost perfect realization of the paradigmatic model of frustrated quantum magnetism. A comparison with linear and nonlinear spin-wave theory reveals that quantum fluctuations induce a strong downward renormalization of the magnon dispersion.



قيم البحث

اقرأ أيضاً

101 - N. A. Fortune , Q. Huang , T. Hong 2020
Quantum fluctuations in the effective spin one-half layered structure triangular-lattice quantum Heisenberg antiferromagnet Ba$_3$CoSb$_2$O$_9$ lift the classical degeneracy of the antiferromagnetic ground state in magnetic field, producing a series of novel spin structures for magnetic fields applied within the crystallographic ab plane. Theoretically unresolved, however, are the effects of interlayer antferromagnetic coupling and transverse magnetic fields on the ground states of this system. To address these issues, we have used specific heat, neutron diffraction, thermal conductivity, and magnetic torque measurements to map out the phase diagram as a function of magnetic field intensity and orientation relative to the crystallographic ab plane. For H parallel to the ab plane, we have discovered an additional, previously unreported magnetic-field-induced phase transition at low temperature and an unexpected tetracritical point in the high field phase diagram, which - coupled with the apparent second-order nature of the phase transitions - eliminates several theoretically proposed spin structures for the high field phases. Our calorimetric measurements as a function of magnetic field orientation are in general agreement with theory for field-orientation angles close to plane parallel but diverge at angles near plane perpendicular; a predicted convergence of two phase boundaries at finite angle and a corresponding change in the order of the field induced phase transition is not observed experimentally. Our results emphasize the role of interlayer coupling in selecting and stabilizing field-induced phases, provide new guidance into the nature of the magnetic order in each phase, and reveal the need for new physics to account for the nature of magnetic ordering in this archetypal 2D spin one-half triangular lattice quantum Heisenberg antiferromagnet.
Here, we report both ac and dc magnetization, thermodynamic and electric properties of hexagonal Ba$_3$NiIr$_2$O$_9$. The Ni$^{2+}$ (spin-1) forms layered triangular-lattice and interacts antiferromagnetically while Ir$^{5+}$ is believed to act as ma gnetic link between the layers. This complex magnetic interaction results in magnetic frustration leading to a spin-glass transition at $T_f$ $sim$ 8.5 K. The observed magnetic relaxation and aging effect also confirms the nonequilibrium ground state. The system further shows large exchange bias which is tunable with cooling field. Below the Curie-Weiss temperature $theta_{CW}$ ($sim$ -29 K), the magnetic specific heat $C_m$ displays a broad hump and at low temperature follows $C_m = gamma T^alpha$ dependence where both $gamma$ and $alpha$ show dependence on temperature and magnetic field. A sign change in magnetoresistace is observed which is due to an interplay among magnetic moment, field and spin-orbit coupling.
138 - Y. Kamiya , L. Ge , Tao Hong 2017
Magnetization plateaus in quantum magnets---where bosonic quasiparticles crystallize into emergent spin superlattices---are spectacular yet simple examples of collective quantum phenomena escaping classical description. While magnetization plateaus h ave been observed in a number of spin-1/2 antiferromagnets, the description of their magnetic excitations remains an open theoretical and experimental challenge. Here, we investigate the dynamical properties of the triangular-lattice spin-1/2 antiferromagnet Ba$_3$CoSb$_2$O$_9$ in its one-third magnetization plateau phase using a combination of nonlinear spin-wave theory and neutron scattering measurements. The agreement between our theoretical treatment and the experimental data demonstrates that magnons behave semiclassically in the plateau in spite of the purely quantum origin of the underlying magnetic structure. This allows for a quantitative determination of Ba$_3$CoSb$_2$O$_9$ exchange parameters. We discuss the implication of our results to the deviations from semiclassical behavior observed in zero-field spin dynamics of the same material and conclude they must have an intrinsic origin.
105 - B. Fak , S. Bieri , E. Canevet 2016
Inelastic neutron scattering is used to study the low-energy magnetic excitations in the spin-1 triangular lattice of the 6H-B phase of Ba$_3$NiSb$_2$O$_9$. We study two powder samples: Ba$_3$NiSb$_2$O$_9$ synthesized under high pressure and Ba$_{2.5 }$Sr$_{0.5}$NiSb$_2$O$_9$ in which chemical pressure stabilizes the 6H-B structure. The measured excitation spectra show broad gapless and nondispersive continua at characteristic wave vectors. Our data rules out most theoretical scenarios that have previously been proposed for this phase, and we find that it is well described by an exotic quantum spin liquid with three flavors of unpaired fermionic spinons, forming a large spinon Fermi surface.
We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high te mperatures down to $J/3$, we calculate local susceptibility near a nonmagnetic impurity and near a grain boundary for the nearest neighbor Heisenberg model in high temperature series expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low density of impurities we would not be able to explain the line broadening present in the experiments already at elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons. We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller projection. The zero temperature local susceptibility decays as a power law and oscillates at $2 k_F$. As in the high temperature analysis we find that a low density of impurities is not able to explain the observed broadening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large density of point-like disorder gives broadening that is consistent with the experiment down to about 5K, but that below this temperature additional mechanism is likely needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا