ﻻ يوجد ملخص باللغة العربية
Multiple image gravitational lens systems, and especially quads are invaluable in determining the amount and distribution of mass in galaxies. This is usually done by mass modeling using parametric or free-form methods. An alternative way of extracting information about lens mass distribution is to use lensing degeneracies and invariants. Where applicable, they allow one to make conclusions about whole classes of lenses without model fitting. Here, we use approximate, but observationally useful invariants formed by the three relative polar angles of quad images around the lens center to show that many smooth elliptical+shear lenses can reproduce the same set of quad image angles within observational error. This result allows us to show in a model-free way what the general class of smooth elliptical+shear lenses looks like in the three dimensional (3D) space of image relative angles, and that this distribution does not match that of the observed quads. We conclude that, even though smooth elliptical+shear lenses can reproduce individual quads, they cannot reproduce the quad population. What is likely needed is substructure, with clump masses larger than those responsible for flux ratio anomalies in quads, or luminous or dark nearby perturber galaxies.
Combining the exquisite angular resolution of Gaia with optical light curves and WISE photometry, the Gaia Gravitational Lenses group (GraL) uses machine learning techniques to identify candidate strongly lensed quasars, and has confirmed over two do
Gravitational lensing of point sources located inside the lens caustic is known to produce four images in a configuration closely related to the source position. We study this relation in the particular case of a sample of quadruply-imaged quasars ob
We report the discovery of a multiply-imaged gravitationally lensed Type Ia supernova, iPTF16geu (SN 2016geu), at redshift $z=0.409$. This phenomenon could be identified because the light from the stellar explosion was magnified more than fifty times
Gravitationally lensed quasars are powerful and versatile astrophysical tools, but they are challengingly rare. In particular, only ~25 well-characterized quadruple systems are known to date. To refine the target catalogue for the forthcoming Taipan
Among known strongly lensed quasar systems, ~25% have gravitational potentials sufficiently flat (and sources sufficiently well aligned) to produce four images rather than two. The projected flattening of the lensing galaxy and tides from neighboring