ترغب بنشر مسار تعليمي؟ اضغط هنا

Elliptic singularities on log symplectic manifolds and Feigin--Odesskii Poisson brackets

176   0   0.0 ( 0 )
 نشر من قبل Brent Pym
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brent Pym




اسأل ChatGPT حول البحث

A log symplectic manifold is a complex manifold equipped with a complex symplectic form that has simple poles on a hypersurface. The possible singularities of such a hypersurface are heavily constrained. We introduce the notion of an elliptic point of a log symplectic structure, which is a singular point at which a natural transversality condition involving the modular vector field is satisfied, and we prove a local normal form for such points that involves the simple elliptic surface singularities $tilde{E}_6,tilde{E}_7$ and $tilde{E}_8$. Our main application is to the classification of Poisson brackets on Fano fourfolds. For example, we show that Feigin and Odesskiis Poisson structures of type $q_{5,1}$ are the only log symplectic structures on projective four-space whose singular points are all elliptic.



قيم البحث

اقرأ أيضاً

117 - Brent Pym , Travis Schedler 2017
We introduce a natural nondegeneracy condition for Poisson structures, called holonomicity, which is closely related to the notion of a log symplectic form. Holonomic Poisson manifolds are privileged by the fact that their deformation spaces are as f inite-dimensional as one could ever hope: the corresponding derived deformation complex is a perverse sheaf. We develop some basic structural features of these manifolds, highlighting the role played by the divergence of Hamiltonian vector fields. As an application, we establish the deformation-invariance of certain families of Poisson manifolds defined by Feigin and Odesskii, along with the elliptic algebras that quantize them.
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, it s relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities, and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
We introduce new invariants associated to collections of compact subsets of a symplectic manifold. They are defined through an elementary-looking variational problem involving Poisson brackets. The proof of the non-triviality of these invariants invo lves various flavors of Floer theory. We present applications to approximation theory on symplectic manifolds and to Hamiltonian dynamics.
We establish a local model for the moduli space of holomorphic symplectic structures with logarithmic poles, near the locus of structures whose polar divisor is normal crossings. In contrast to the case without poles, the moduli space is singular: wh en the cohomology class of a symplectic structure satisfies certain linear equations with integer coefficients, its polar divisor can be partially smoothed, yielding adjacent irreducible components of the moduli space that correspond to possibly non-normal crossings structures. These components are indexed by combinatorial data we call smoothing diagrams, and amenable to algorithmic classification. Applying the theory to four-dimensional projective space, we obtain a total of 40 irreducible components of the moduli space, most of which are new. Our main technique is a detailed analysis of the relevant deformation complex (the Poisson cohomology) as an object of the constructible derived category.
This paper is a fusion of a survey and a research article. We focus on certain rigidity phenomena in function spaces associated to a symplectic manifold. Our starting point is a lower bound obtained in an earlier paper with Zapolsky for the uniform n orm of the Poisson bracket of a pair of functions in terms of symplectic quasi-states. After a short review of the theory of symplectic quasi-states, we extend this bound to the case of iterated Poisson brackets. A new technical ingredient is the use of symplectic integrators. In addition, we discuss some applications to symplectic approximation theory and present a number of open problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا