ﻻ يوجد ملخص باللغة العربية
The excitation of surface plasmons in magnetic nano-structures can strongly influence their magneto-optical properties. Here, we use photoemission electron microscopy to map the spatial distribution of the electric near-field on a nano-patterned magnetic surface that supports plasmon polaritons. By using different photon energies and polarization states of the incident light we reveal that the electric near-field is either concentrated in spots forming a hexagonal lattice with the same symmetry as the Ni nano-pattern or in stripes oriented along the $Gamma$-K direction of the lattice and perpendicular to the polarization direction. We show that the polarization-dependent near-field enhancement on the patterned surface is directly correlated to both the excitation of surface plasmon polaritons on the patterned surface as well as the enhancement of the polar magneto-optical Kerr effect.
The influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed
In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing
Large surface plasmon polariton assisted enhancement of the magneto-optical activity has been observed in the past, through spectral measurements of the polar Kerr rotation in Co hexagonal antidot arrays. Here, we report a strong thickness dependence
We present studies on magnetic nano-structures with 3D architectures, fabricated using electrodeposition in the pores of well-ordered templates prepared by self-assembly of polystyrene latex spheres. The coercive field is found to demonstrate an osci
Electrons and holes confined in quantum dots define an excellent building block for quantum emergence, simulation, and computation. In order for quantum electronics to become practical, large numbers of quantum dots will be required, necessitating th