ﻻ يوجد ملخص باللغة العربية
An inhomogeneous Kaluza-Klein compactification to four dimensions, followed by a conformal transformation, results in a system with position dependent mass (PDM). This origin of a PDM is quite different from the condensed matter one. A substantial generalization of a previously studied nonlinear oscillator with variable mass is obtained, wherein the position dependence of the mass of a nonrelativistic particle is due to a dilatonic coupling function emerging from the extra dimension. Previously obtained solutions for such systems can be extended and reinterpreted as nonrelativistic particles interacting with dilaton fields, which, themselves, can have interesting structures. An application is presented for the nonlinear oscillator, where within the new scenario the particle is coupled to a dilatonic string.
The classical Einstein-Hilbert (EH) action for general relativity (GR) is shown to be formally analogous to the classical system with position-dependent mass (PDM) models. The analogy is developed and used to build the covariant classical Hamiltonian
A translation operator is introduced to describe the quantum dynamics of a position-dependent mass particle in a null or constant potential. From this operator, we obtain a generalized form of the momentum operator as well as a unique commutation rel
We give a pedagogical introduction of the stochastic variational method and show that this generalized variational principle describes classical and quantum mechanics in a unified way.
We study the $(1+1)$ dimensional generalized Dirac oscillator with a position-dependent mass. In particular, bound states with zero energy as well as non zero energy have been obtained for suitable choices of the mass function/oscillator interaction.
In this paper we extend the investigation of Adami and Ver Steeg [Class. Quantum Grav. textbf{31}, 075015 (2014)] to treat the process of black hole particle emission effectively as the analogous quantum optical process of parametric down conversion