ترغب بنشر مسار تعليمي؟ اضغط هنا

New scenarios for classical and quantum mechanical systems with position dependent mass

170   0   0.0 ( 0 )
 نشر من قبل John Morris
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.R. Morris




اسأل ChatGPT حول البحث

An inhomogeneous Kaluza-Klein compactification to four dimensions, followed by a conformal transformation, results in a system with position dependent mass (PDM). This origin of a PDM is quite different from the condensed matter one. A substantial generalization of a previously studied nonlinear oscillator with variable mass is obtained, wherein the position dependence of the mass of a nonrelativistic particle is due to a dilatonic coupling function emerging from the extra dimension. Previously obtained solutions for such systems can be extended and reinterpreted as nonrelativistic particles interacting with dilaton fields, which, themselves, can have interesting structures. An application is presented for the nonlinear oscillator, where within the new scenario the particle is coupled to a dilatonic string.



قيم البحث

اقرأ أيضاً

62 - Davood Momeni 2020
The classical Einstein-Hilbert (EH) action for general relativity (GR) is shown to be formally analogous to the classical system with position-dependent mass (PDM) models. The analogy is developed and used to build the covariant classical Hamiltonian as well as defining an alternative phase portrait for GR. The set of associated Hamiltons equations in the phase space is presented as a first-order system dual to the Einstein field equations. Following the principles of quantum mechanics, I build a canonical theory for the classical general. A fully consistent quantum Hamiltonian for GR is constructed based on adopting a high dimensional phase space. It is observed that the functional wave equation is timeless. As a direct application, I present an alternative wave equation for quantum cosmology. In comparison to the standard Arnowitt-Deser-Misner(ADM) decomposition and quantum gravity proposals, I extended my analysis beyond the covariant regime when the metric is decomposed into the $3+1$ dimensional ADM decomposition. I showed that an equal dimensional phase space can be obtained if one applies ADM decomposed metric.
A translation operator is introduced to describe the quantum dynamics of a position-dependent mass particle in a null or constant potential. From this operator, we obtain a generalized form of the momentum operator as well as a unique commutation rel ation for $hat x$ and $hat p_gamma$. Such a formalism naturally leads to a Schrodinger-like equation that is reminiscent of wave equations typically used to model electrons with position-dependent (effective) masses propagating through abrupt interfaces in semiconductor heterostructures. The distinctive features of our approach is demonstrated through analytical solutions calculated for particles under null and constant potentials like infinite wells in one and two dimensions and potential barriers.
124 - C.-L. Ho , P. Roy 2018
We study the $(1+1)$ dimensional generalized Dirac oscillator with a position-dependent mass. In particular, bound states with zero energy as well as non zero energy have been obtained for suitable choices of the mass function/oscillator interaction. It has also been shown that in the presence of an electric field, bound states exist if the magnitude of the electric field does not exceed a critical value.
166 - Paul M. Alsing 2014
In this paper we extend the investigation of Adami and Ver Steeg [Class. Quantum Grav. textbf{31}, 075015 (2014)] to treat the process of black hole particle emission effectively as the analogous quantum optical process of parametric down conversion (PDC) with a dynamical (depleted vs. non-depleted) `pump source mode which models the evaporating black hole (BH) energy degree of freedom. We investigate both the short time (non-depleted pump) and long time (depleted pump) regimes of the quantum state and its impact on the Holevo channel capacity for communicating information from the far past to the far future in the presence of Hawking radiation. The new feature introduced in this work is the coupling of the emitted Hawking radiation modes through the common black hole `source pump mode which phenomenologically represents a quantized energy degree of freedom of the gravitational field. This (zero-dimensional) model serves as a simplified arena to explore BH particle production/evaporation and back-action effects under an explicitly unitary evolution which enforces quantized energy/particle conservation. Within our analogous quantum optical model we examine the entanglement between two emitted particle/anti-particle and anti-particle/particle pairs coupled via the black hole (BH) evaporating `pump source. We also analytically and dynamically verify the `Page information time for our model which refers to the conventionally held belief that the information in the BH radiation becomes significant after the black hole has evaporated half its initial energy into the outgoing radiation. Lastly, we investigate the effect of BH particle production/evaporation on two modes in the exterior region of the BH event horizon that are initially maximally entangled, when one mode falls inward and interacts with the black hole, and the other remains forever outside and non-interacting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا