ترغب بنشر مسار تعليمي؟ اضغط هنا

Local interstellar cosmic-ray spectra derived from gamma-ray emissivities

584   0   0.0 ( 0 )
 نشر من قبل Andrew Strong
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. W. Strong




اسأل ChatGPT حول البحث

Precise gamma-ray emissivities from cosmic-ray interactions with interstellar gas have been recently derived using Fermi-LAT data, and used to constrain the local interstellar spectra of protons and leptons. We report on a continuing effort to exploit these emissivities combined with the latest hadronic gamma-ray production cross-sections and other constraints such as synchrotron emission for the leptonic component. The interstellar spectra provide important information for heliospheric modulation, and cosmic-ray origin and propagation.



قيم البحث

اقرأ أيضاً

Local interstellar spectra (LIS) of primary cosmic ray (CR) nuclei, such as helium, oxygen, and mostly primary carbon are derived for the rigidity range from 10 MV to ~200 TV using the most recent experimental results combined with the state-of-the-a rt models for CR propagation in the Galaxy and in the heliosphere. Two propagation packages, GALPROP and HelMod, are combined into a single framework that is used to reproduce direct measurements of CR species at different modulation levels, and at both polarities of the solar magnetic field. The developed iterative maximum-likelihood method uses GALPROP-predicted LIS as input to HelMod, which provides the modulated spectra for specific time periods of the selected experiments for model-data comparison. The interstellar and heliospheric propagation parameters derived in this study are consistent with our prior analyses using the same methodology for propagation of CR protons, helium, antiprotons, and electrons. The resulting LIS accommodate a variety of measurements made in the local interstellar space (Voyager 1) and deep inside the heliosphere at low (ACE/CRIS, HEAO-3) and high energies (PAMELA, AMS-02).
Low energy cosmic rays are modulated by the solar activity when they propagation in the heliosphere, leading to ambiguities in understanding their acceleration at sources and propagation in the Milky Way. By means of the precise measurements of the $ e^-$, $e^+$, $e^-+e^+$, and $e^+/(e^-+e^+)$ spectra by AMS-02 near the Earth, as well as the very low energy measurements of the $e^-+e^+$ fluxes by Voyager-1 far away from the Sun, we derive the local interstellar spectra (LIS) of $e^-$ and $e^+$ components individually. Our method is based on a non-parametric description of the LIS of $e^-$ and $e^+$ and a force-field solar modulation model. We then obtain the evolution of the solar modulation parameters based on the derived LIS and the monthly fluxes of cosmic ray $e^-$ and $e^+$ measured by AMS-02. {bf To better fit the monthly data, additional renormalization factors for $e^-$ and $e^+$ have been multiplied to the modulated fluxes.} We find that the inferred solar modulation parameters of positrons are in good agreement with that of cosmic ray nuclei, and the time evolutions of the solar modulation parameters of electrons and positrons differ after the reversal of the heliosphere magnetic field polarity, which shows clearly the charge-sign dependent modulation effect.
Most of the diffuse Galactic GeV gamma-ray emission is produced via collisions of cosmic ray (CR) protons with ISM protons. As such the observed spectra of the gamma-rays and the CRs should be strongly linked. Recent observations of Fermi-LAT exhibit a hardening of the gamma-ray spectrum at around a hundred GeV, between the Sagittarius and Carina tangents, and a further hardening at a few degrees above and below the Galactic plane. However, standard CR propagation models that assume a time independent source distribution and a location independent diffusion cannot give rise to a spatially dependent CR (and hence gamma-ray) spectral slopes. Here we consider a dynamic spiral arm model in which the distribution of CR sources is concentrated in the (dynamic) spiral arms, and we study the effects of this model on the $pi^0$-decay produced gamma-ray spectra. Within this model, near the Galactic arms the observed gamma-ray spectral slope is not trivially related to the CR injection spectrum and energy dependence of the diffusion coefficient. We find unique signatures that agree with the Fermi-LAT observations. This model also provides a physical explanation for the difference between the local CR spectral slope and the CR slope inferred from the average gamma-ray spectrum.
Recent observations found that electrons are accelerated to $sim$10 GeV and emit synchrotron hard X-rays in two magnetic white dwarfs (WDs), also known as cataclysmic variables (CVs). In nova outbursts of WDs, multi-GeV gamma-rays were detected infer ring that protons are accelerated to 100 GeV or higher. In recent optical surveys, the WD density is found to be higher near the Sun than in the Galactic disk by a factor $sim$2.5. The cosmic rays (CR) produced by local CVs and novae will accumulate in the local bubble for $10^6$ - $10^7$ yrs. On these findings, we search for CRs from historic CVs and novae in the observed CR spectra. We model the CR spectra at the heliopause as sums of Galactic and local components based on observational data as much as possible. The initial Galactic CR electron and proton spectra are deduced from the gamma-ray emissivity, the local electron spectrum from the hard X-ray spectra at the CVs, and the local proton spectrum inferred by gamma-ray spectrum at novae. These spectral shapes are then expressed in a simple set of polynomial functions of CR energy and regressively fitted until the high-energy ($>$100 GeV) CR spectra near Earth and the Voyager-1 spectra at the heliopause are reproduced. We then extend the modeling to nuclear CR spectra and find that one spectral shape fits all local nuclear CRs and the apparent hardening of the nuclear CR spectra is caused by the roll-down of local nuclear spectra around 100 - 200 GeV. All local CR spectra populate in a limited energy band below 100 - 200 GeV and enhance gamma-ray emissivity below $sim$10 GeV. Such an enhancement is observed in the inner Galaxy, suggesting the CR fluxes from CVs and novae are substantially higher there.
Composition and spectra of Galactic cosmic rays (CRs) are vital for studies of high-energy processes in a variety of environments and on different scales, for interpretation of gamma-ray and microwave observations, disentangling possible signatures o f new phenomena, and for understanding of our local Galactic neighborhood. Since its launch, AMS-02 has delivered outstanding quality measurements of the spectra of antiprotons, electrons, positrons, and nuclei: H-O, Ne, Mg, Si. These measurements resulted in a number of breakthroughs, however, spectra of heavier nuclei and especially low-abundance nuclei are not expected until later in the mission. Meanwhile, a comparison of published AMS-02 results with earlier data from HEAO-3-C2 indicate that HEAO-3-C2 data may be affected by undocumented systematic errors. Utilizing such data to compensate for the lack of AMS-02 measurements could result in significant errors. In this paper we show that a fraction of HEAO-3-C2 data match available AMS-02 measurements quite well and can be used together with Voyager 1 and ACE-CRIS data to make predictions for the local interstellar spectra (LIS) of nuclei that are not yet released by AMS-02. We are also updating our already published LIS to provide a complete set from H-Ni in the energy range from 1 MeV/nucleon to ~100-500 TeV/nucleon thus covering 8-9 orders of magnitude in energy. Our calculations employ the GalProp-HelMod framework that is proved to be a reliable tool in deriving the LIS of CR antiprotons, electrons, and nuclei H-O.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا