ﻻ يوجد ملخص باللغة العربية
We measured the polarized optical conductivity of URu$_2$Si$_2$ from room temperature down to 5 K, covering the Kondo state, the coherent Kondo liquid regime, and the hidden-order phase. The normal state is characterized by an anisotropic behavior between the ab plane and c axis responses. The ab plane optical conductivity is strongly influenced by the formation of the coherent Kondo liquid: a sharp Drude peak develops and a hybridization gap at 12 meV leads to a spectral weight transfer to mid-infrared energies. The c axis conductivity has a different behavior: the Drude peak already exists at 300 K and no particular anomaly or gap signature appears in the coherent Kondo liquid regime. When entering the hidden-order state, both polarizations see a dramatic decrease in the Drude spectral weight and scattering rate, compatible with a loss of about 50 % of the carriers at the Fermi level. At the same time a density-wave like gap appears along both polarizations at about 6.5 meV at 5 K. This gap closes respecting a mean field thermal evolution in the ab plane. Along the c axis it remains roughly constant and it fills up rather than closing.
The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu$_2$Si$_2$. In this paper we discuss its nature and the strong constraints it places on current theories of the hidden order. In the hastatic theory such a
A second-order phase transition is associated with emergence of an order parameter and a spontaneous symmetry breaking. For the heavy fermion superconductor URu$_2$Si$_2$, the symmetry of the order parameter associated with its ordered phase below 17
At T$_0$ = 17.5 K an exotic phase emerges from a heavy fermion state in {ur}. The nature of this hidden order (HO) phase has so far evaded explanation. Formation of an unknown quasiparticle (QP) structure is believed to be responsible for the massive
Quantum materials are epitomized by the influence of collective modes upon their macroscopic properties. Relatively few examples exist, however, whereby coherence of the ground-state wavefunction directly contributes to the conductivity. Notable exam
This Topical Review describes the multitude of unconventional behaviors in the hidden order, heavy fermion, antiferromagnetic and superconducting phases of the intermetallic compound URu$_2$Si$_2$ when tuned with pressure, magnetic field, and substit