ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi Large Area Telescope observations of high-energy gamma-ray emission from behind-the-limb solar flares

244   0   0.0 ( 0 )
 نشر من قبل Melissa Pesce-Rollins Dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fermi-LAT >30 MeV observations have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. These sample both the impulsive and long duration phases of GOES M and X class flares. Of particular interest is the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources and implications for the particle acceleration mechanisms.



قيم البحث

اقرأ أيضاً

We report on the Fermi-LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi-LAT observations are associated with flares from active regions o riginating behind both the eastern and western limbs, as determined by STEREO. All three flares are associated with very fast coronal mass ejections (CMEs) and strong solar energetic particle events. We present updated localizations of the >100 MeV photon emission, hard X-ray (HXR)and EUV images, and broadband spectra from 10 keV to 10 GeV, as well as microwave spectra. We also provide a comparison of the BTL flares detected by Fermi-LAT with three on-disk flares and present a study of some of the significant quantities of these flares as an attempt to better understand the acceleration mechanisms at work during these occulted flares. We interpret the HXR emission to be due to electron bremsstrahlung from a coronal thin-target loop top with the accelerated electron spectra steepening at semirelativistic energies. The >100 MeV gamma-rays are best described by a pion-decay model resulting from the interaction of protons (and other ions) in a thick-target photospheric source. The protons are believed to have been accelerated (to energies >10 GeV) in the CME environment and precipitate down to the photosphere from the downstream side of the CME shock and landed on the front side of the Sun, away from the original flare site and the HXR emission.
The inner region of the Milky Way is one of the most interesting and complex regions of the gamma-ray sky. The intense interstellar emission and resolved point sources, as well as potential contributions by other sources such as unresolved source pop ulations and dark matter, complicate the interpretation of the data. In this paper the Fermi LAT team analysis of a 15x15 degree region about the Galactic centre is described. The methodology for point-source detection and treatment of the interstellar emission is given. In general, the bulk of the gamma-ray emission from this region is attributable to a combination of these two contributions. However, low-intensity residual emission remains and its characterisation is discussed.
We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first 7 years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.
The exact mechanism for the production of fast $gamma$-ray variability in blazars remains debated. Magnetic reconnection, in which plasmoids filled with relativistic particles and magnetic fields are formed, is a viable candidate to explain the broad band electromagnetic spectrum and variability of these objects. Using state-of-the-art magnetic reconnection simulations, we generate realistic $gamma$-ray light curves that would be observed with the Fermi Large Area Telescope. A comparison with observed $gamma$-ray flares from flat spectrum radio quasars (FSRQs) reveals that magnetic reconnection events lead to comparable flux levels and variability patterns, in particular when the reconnection layer is slightly misaligned with the line of sight. Emission from fast plasmoids moving close to the line of sight could explain fast variability on the time scales of minutes for which evidence has been found in observations of FSRQs. Our results motivate improvements in existing radiative transfer simulations as well as dedicated searches for fast variability as evidence for magnetic reconnection events.
Context. The observation of >100 MeV {gamma}-rays in the minutes to hours following solar flares suggests that high-energy particles interacting in the solar atmosphere can be stored and/or accelerated for long time periods. The occasions when {gamma }-rays are detected even when the solar eruptions occurred beyond the solar limb as viewed from Earth provide favorable viewing conditions for studying the role of coronal shocks driven by coronal mass ejections (CMEs) in the acceleration of these particles. Aims: In this paper, we investigate the spatial and temporal evolution of the coronal shocks inferred from stereoscopic observations of behind-the-limb flares to determine if they could be the source of the particles producing the {gamma}-rays. Methods: We analyzed the CMEs and early formation of coronal shocks associated with {gamma}-ray events measured by the Fermi-Large Area Telescope (LAT) from three eruptions behind the solar limb as viewed from Earth on 2013 Oct. 11, 2014 Jan. 06 and Sep. 01. We used a 3D triangulation technique, based on remote-sensing observations to model the expansion of the CME shocks from above the solar surface to the upper corona. Coupling the expansion model to various models of the coronal magnetic field allowed us to derive the time-dependent distribution of shock Mach numbers and the magnetic connection of particles produced by the shock to the solar surface visible from Earth. Results: The reconstructed shock fronts for the three events became magnetically connected to the visible solar surface after the start of the flare and just before the onset of the >100 MeV {gamma}-ray emission. The shock surface at these connections also exhibited supercritical Mach numbers required for significant particle energization. [...] (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا