ﻻ يوجد ملخص باللغة العربية
We report the existence of metallic two-dimensional electron gases (2DEGs) at the (001) and (101) surfaces of bulk-insulating TiO2 anatase due to local chemical doping by oxygen vacancies in the near-surface region. Using angle-resolved photoemission spectroscopy, we find that the electronic structure at both surfaces is composed of two occupied subbands of d_xy orbital character. While the Fermi surface observed at the (001) termination is isotropic, the 2DEG at the (101) termination is anisotropic and shows a charge carrier density three times larger than at the (001) surface. Moreover, we demonstrate that intense UV synchrotron radiation can alter the electronic structure and stoichiometry of the surface up to the complete disappearance of the 2DEG. These results open a route for the nano-engineering of confined electronic states, the control of their metallic or insulating nature, and the tailoring of their microscopic symmetry, using UV illumination at different surfaces of anatase.
Studies on oxide quasi-two dimensional electron gas (q2DEG) have been a playground for the discovery of novel and sometimes unexpected phenomena, like the reported magnetism at the surface and at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ non-
We develop a first-principles approach based on many-body perturbation theory to investigate the effects of the interaction between electrons and carrier plasmons on the electronic properties of highly-doped semiconductors and oxides. Through the eva
The discovery of two-dimensional electron gas (2DEG) at well-defined interfaces between insulating complex oxides provides the opportunity for a new generation of all-oxide electronics. Particularly, the 2DEG at the interface between two perovskite i
High mobility two-dimensional electron gases (2DEGs) underpin todays silicon based devices and are of fundamental importance for the emerging field of oxide electronics. Such 2DEGs are usually created by engineering band offsets and charge transfer a
Oxygen vacancies created in anatase TiO2 by UV photons (80 - 130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission (ARPES) reveals that the quasiparticles are l