ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Lower Bound for Graph Collision Implies Lower Bound for Triangle Detection

163   0   0.0 ( 0 )
 نشر من قبل J\\=anis Iraids
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that an improvement to the best known quantum lower bound for GRAPH-COLLISION problem implies an improvement to the best known lower bound for TRIANGLE problem in the quantum query complexity model. In GRAPH-COLLISION we are given free access to a graph $(V,E)$ and access to a function $f:Vrightarrow {0,1}$ as a black box. We are asked to determine if there exist $(u,v) in E$, such that $f(u)=f(v)=1$. In TRIANGLE we have a black box access to an adjacency matrix of a graph and we have to determine if the graph contains a triangle. For both of these problems the known lower bounds are trivial ($Omega(sqrt{n})$ and $Omega(n)$, respectively) and there is no known matching upper bound.



قيم البحث

اقرأ أيضاً

The Index Erasure problem asks a quantum computer to prepare a uniform superposition over the image of an injective function given by an oracle. We prove a tight $Omega(sqrt{n})$ lower bound on the quantum query complexity of the non-coherent case of the problem, where, in addition to preparing the required superposition, the algorithm is allowed to leave the ancillary memory in an arbitrary function-dependent state. This resolves an open question of Ambainis, Magnin, Roetteler, and Roland (CCC 2011), who gave a tight bound for the coherent case, the case where the ancillary memory must return to its initial state. The proof is based on evaluating certain Krein parameters of a symmetric association scheme defined over partial permutations. The study of this association scheme may be of independent interest.
136 - Robert Spalek 2013
We prove a quantum query lower bound Omega(n^{(d+1)/(d+2)}) for the problem of deciding whether an input string of size n contains a k-tuple which belongs to a fixed orthogonal array on k factors of strength d<=k-1 and index 1, provided that the alph abet size is sufficiently large. Our lower bound is tight when d=k-1. The orthogonal array problem includes the following problems as special cases: k-sum problem with d=k-1, k-distinctness problem with d=1, k-pattern problem with d=0, (d-1)-degree problem with 1<=d<=k-1, unordered search with d=0 and k=1, and graph collision with d=0 and k=2.
Given two strings $S$ and $P$, the Episode Matching problem is to compute the length of the shortest substring of $S$ that contains $P$ as a subsequence. The best known upper bound for this problem is $tilde O(nm)$ by Das et al. (1997), where $n,m$ a re the lengths of $S$ and $P$, respectively. Although the problem is well studied and has many applications in data mining, this bound has never been improved. In this paper we show why this is the case by proving that an $O((nm)^{1-epsilon})$ algorithm (even for binary strings) would refute the popular Strong Exponential Time Hypothesis (SETH). The proof is based on a simple reduction from Orthogonal Vectors.
We prove tight lower bounds for the following variant of the counting problem considered by Aaronson et al. The task is to distinguish whether an input set $xsubseteq [n]$ has size either $k$ or $k=(1+epsilon)k$. We assume the algorithm has access to * the membership oracle, which, for each $iin [n]$, can answer whether $iin x$, or not; and * the uniform superposition $|psi_xrangle = sum_{iin x} |irangle/sqrt{|x|}$ over the elements of $x$. Moreover, we consider three different ways how the algorithm can access this state: ** the algorithm can have copies of the state $|psi_xrangle$; ** the algorithm can execute the reflecting oracle which reflects about the state $|psi_xrangle$; ** the algorithm can execute the state-generating oracle (or its inverse) which performs the transformation $|0ranglemapsto |psi_xrangle$. Without the second type of resources (related to $|psi_xrangle$), the problem is well-understood, see Brassard et al. The study of the problem with the second type of resources was recently initiated by Aaronson et al. We completely resolve the problem for all values of $1/k le epsilonle 1$, giving tight trade-offs between all types of resources available to the algorithm. Thus, we close the main open problems from Aaronson et al. The lower bounds are proven using variants of the adversary bound by Belovs and employing analysis closely related to the Johnson association scheme.
We show that any randomised Monte Carlo distributed algorithm for the Lovasz local lemma requires $Omega(log log n)$ communication rounds, assuming that it finds a correct assignment with high probability. Our result holds even in the special case of $d = O(1)$, where $d$ is the maximum degree of the dependency graph. By prior work, there are distributed algorithms for the Lovasz local lemma with a running time of $O(log n)$ rounds in bounded-degree graphs, and the best lower bound before our work was $Omega(log^* n)$ rounds [Chung et al. 2014].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا