ﻻ يوجد ملخص باللغة العربية
We present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Flexible Coordinate Descent (FCD). At each iteration of FCD, a block of coordinates is sampled randomly, a quadratic model is formed about that block and the model is minimized emph{approximately/inexactly} to determine the search direction. An inexpensive line search is then employed to ensure a monotonic decrease in the objective function and acceptance of large step sizes. We present several high probability iteration complexity results to show that convergence of FCD is guaranteed theoretically. Finally, we present numerical results on large-scale problems to demonstrate the practical performance of the method.
The coordinate descent (CD) method has recently become popular for solving very large-scale problems, partly due to its simple update, low memory requirement, and fast convergence. In this paper, we explore the greedy CD on solving non-negative quadr
The method of block coordinate gradient descent (BCD) has been a powerful method for large-scale optimization. This paper considers the BCD method that successively updates a series of blocks selected according to a Markov chain. This kind of block s
We study ways to accelerate greedy coordinate descent in theory and in practice, where accelerate refers either to $O(1/k^2)$ convergence in theory, in practice, or both. We introduce and study two algorithms: Accelerated Semi-Greedy Coordinate Desce
Difference-of-Convex (DC) minimization, referring to the problem of minimizing the difference of two convex functions, has been found rich applications in statistical learning and studied extensively for decades. However, existing methods are primari
We present a novel, practical, and provable approach for solving diagonally constrained semi-definite programming (SDP) problems at scale using accelerated non-convex programming. Our algorithm non-trivially combines acceleration motions from convex