ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Analysis for Frequency Standards in the Microwave and Optical Domains

298   0   0.0 ( 0 )
 نشر من قبل Nils Huntemann
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a FPGA-based phase analyzer to investigate these effects and conducted measurements on two frequency standards. For the caesium fountain PTB-CSF2 we were able to exclude phase variations of the microwave source at the level of a few $mu$rad, corresponding to relative frequency shifts of less than 10$^{-16}$. In the optical domain, we investigated phase variations in PTBs Yb$^+$ optical frequency standard and made detailed measurements of AOM chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larger than 10$^{-18}$.



قيم البحث

اقرأ أيضاً

We describe a measurement of the frequency of the 2S1/2(F = 0) - 2D3/2(F = 2) transition of 171Yb+ at the wavelength 436 nm (frequency 688 THz), using a single Yb+ ion confined in a Paul trap and two caesium fountains as references. In one of the fou ntains, the frequency of the microwave oscillator that interrogates the caesium atoms is stabilized by the laser that excites the Yb+ reference transition with a linewidth in the hertz range. The stability is transferred to the microwave oscillator with the use of a fiber laser based optical frequency comb generator that also provides the frequency conversion for the absolute frequency measurement. The frequency comb generator is configured as a transfer oscillator so that fluctuations of the pulse repetition rate and of the carrier offset frequency do not degrade the stability of the frequency conversion. The phase noise level of the generated ultrastable microwave signal is comparable to that of a cryogenic sapphire oscillator. For fountain operation with optical molasses loaded from a laser cooled atomic beam source, we obtain a stability corresponding to a fractional Allan deviation of $4.1times 10^{-14} (tau/text{s})^{-1/2}$. With the molasses loaded from thermal vapor and an averaging time of 65 h, we measure the frequency of the Yb+ transition with a relative statistical uncertainty of $2.8times10^{-16}$ and a systematic uncertainty of $5.9times10^{-16}$. The frequency was also simultaneously measured with the second fountain that uses a quartz-based interrogation oscillator. The unperturbed frequency of the Yb+ transition is realized with an uncertainty of $1.1times10^{-16}$ that mainly results from the uncertainty of the blackbody shift at the operating temperature near 300 K. The transition frequency of 688 358 979 309 307.82(36) Hz, measured with the two fountains, is in good agreement with previous results.
247 - Bo Yan , Yisheng Ma , Yuzhu Wang 2008
We propose a new scheme of microwave frequency standards based on pulsed coherent optical information storage. Unlike the usual frequency reference where the Ramsey fringe is printed on the population of a certain state, we print the Ramsey fringe on the coherence. Then the coherence is detected in the form of a retrieval light. The central line of the Ramsey fringe can be used as a frequency reference in an absorption-cell-based atomic frequency standard. This scheme is free of light shifts as the interrogating process is separated from the optical pumping processes, and the cavity pulling effect is negligible due to the low Q requirement. Encoding the Ramsey interference into the retrieval light pulse has the merit of high signal to noise ratio and the estimated frequency stability of shot noise limit is about $2times10^{-14}$ in 1 second, this scheme is promising for building small, compact and stable atomic frequency standards.
We report progress on 115In+ and 137Ba+ single ion optical frequency standards using all solid-state sources. Both are free from quadrupole field shifts and together enable a search for drift in fundamental constants.
110 - Amar C. Vutha 2015
Gravitational waves imprint apparent Doppler shifts on the frequency of photons propagating between an emitter and detector of light. This forms the basis of a method to detect gravitational waves using Doppler velocimetry between pairs of satellites . Such detectors, operating in the milli-hertz gravitational frequency band, could lead to the direct detection of gravitational waves. The crucial component in such a detector is the frequency standard on board the emitting and receiving satellites. We point out that recent developments in atomic frequency standards have led to devices that are approaching the sensitivity required to detect gravitational waves from astrophysically interesting sources. The sensitivity of satellites equipped with optical frequency standards for Doppler velocimetry is examined, and a design for a robust, space-capable optical frequency standard is presented.
Optical frequency standards, lasers stabilized to atomic or molecular transitions, are widely used in length metrology and laser ranging, provide a backbone for optical communications and lie at the heart of next-generation optical atomic clocks. Her e we demonstrate a compact, low-power optical frequency standard based on the Doppler-free, two-photon transition in rubidium-87 at 778 nm implemented on a micro-optics breadboard. The optical standard achieves a fractional frequency stability of 2.9x10$^{-12}$/$sqrt{tau}$ for averaging times $tau$ less than 10$^{3}$ s, has a volume of $approx$35 cm$^3$ and operates on $approx$450 mW of electrical power. These results demonstrate a key step towards the development of compact optical clocks and the broad dissemination of SI-traceable wavelength references.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا