ﻻ يوجد ملخص باللغة العربية
We determine the size of the critical region of the superfluid transition in the BCS-BEC crossover of a three-dimensional fermion gas, using a renormalization-group approach to a bosonic theory of pairing fluctuations. For the unitary Fermi gas, we find a sizable critical region $[T_G^-,T_G^+]$, of order $T_c$, around the transition temperature $T_c$ with a pronounced asymmetry: $|T_G^+-T_c|/|T_G^--T_c|sim8$. The critical region is strongly suppressed on the BCS side of the crossover but remains important on the BEC side.
We investigate the macroscopic quantum tunneling of fermionic superfluids in the two-dimensional BCS-BEC crossover by using an effective tunneling energy which explicitly depends on the condensate fraction and the chemical potential of the system. We
We develop a microscopic model to describe the Josephson dynamics between two superfluid reservoirs of ultracold fermionic atoms which accounts for the dependence of the critical current on both the barrier height and the interaction strength along t
We report the experimental measurement of the equation of state of a two-dimensional Fermi gas with attractive s-wave interactions throughout the crossover from a weakly coupled Fermi gas to a Bose gas of tightly bound dimers as the interaction stren
We review the study of the superfluid phase transition in a system of fermions whose interaction can be tuned continuously along the crossover from Bardeen-Cooper-Schrieffer (BCS) superconducting phase to a Bose-Einstein condensate (BEC), also in the
Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Cri