ترغب بنشر مسار تعليمي؟ اضغط هنا

Searches for millisecond pulsar candidates among the unidentified Fermi objects

617   0   0.0 ( 0 )
 نشر من قبل Chung Yue Hui David
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Y. Hui




اسأل ChatGPT حول البحث

Here we report the results of searching millisecond pulsar (MSP) candidates from the Fermi LAT second source catalog (2FGL). Seven unassociated $gamma-$ray sources in this catalog are identified as promising MSP candidates based on their $gamma$-ray properties. Through the X-ray analysis, we have detected possible X-ray counterparts, localized to an arcsecond accuracy. We have systematically estimated their X-ray fluxes and compared with the corresponding $gamma$-ray fluxes. The X-ray to $gamma$-ray flux ratios for 2FGL J1653.6-0159 and 2FGL J1946.4-5402 are comparable with the typical value for pulsars. For 2FGL J1625.2-0020, 2FGL J1653.6-0159 and 2FGL J1946.4-5402, their candidate X-ray counterparts are bright enough for performing a detailed spectral and temporal analysis to discriminate their thermal/non thermal nature and search for the periodic signal. We have also searched for possible optical/IR counterparts at the X-ray positions. For the optical/IR source coincident with the brightest X-ray object that associated with 2FGL J1120.0-2204, its spectral energy distribution is comparable with a late-type star. Evidence for the variability has also been found by examining its optical light curve. All the aforementioned 2FGL sources resemble a pulsar in one or more aspects, which make them as the promising targets for follow-up investigations.



قيم البحث

اقرأ أيضاً

126 - C. Y. Hui , K.L. Li (1 2020
We report the results of searching pulsar-like candidates from the unidentified objects in the $3^{rm rd}$ Catalog of Hard Fermi-LAT sources (3FHL). Using a machine-learning based classification scheme with a nominal accuracy of $sim98%$, we have sel ected 27 pulsar-like objects from 200 unidentified 3FHL sources for an identification campaign. Using archival data, X-ray sources are found within the $gamma-$ray error ellipses of 10 3FHL pulsar-like candidates. Within the error circles of the much better constrained X-ray positions, we have also searched for the optical/infrared counterparts and examined their spectral energy distributions. Among our short-listed candidates, the most secure identification is the association of 3FHL J1823.3-1339 and its X-ray counterpart with the globular cluster Mercer 5. The $gamma-$rays from the source can be contributed by a population of millisecond pulsars residing in the cluster. This makes Mercer 5 as one of the slowly growing hard $gamma-$ray population of globular clusters with emission $>10$ GeV. Very recently, another candidate picked by our classification scheme, 3FHL J1405.1-6118, has been identified as a new $gamma-$ray binary with an orbital period of $13.7$ days. Our X-ray analysis with a short Chandra observation has found a possible periodic signal candidate of $sim1.4$ hrs and a putative extended X-ray tail of $sim20$ arcsec long. Spectral energy distribution of its optical/infrared counterpart conforms with a blackbody of $T_{rm bb}sim40000$ K and $R_{rm bb}sim12R_{odot}$ at a distance of 7.7 kpc. This is consistent with its identification as an early O star as found by infrared spectroscopy.
We discuss the time-series behavior of 8 extragalactic 3FGL sources away from the Galactic plane (i.e., $mid bmid geq 10^{circ}$) whose uncertainty ellipse contains a single X-ray and one radio source. The analysis was done using the standard Fermi t extit{ScienceTools}, package of version v10r0p5. The results show that sources in the study sample display a slight indication of flux variability in $gamma$-ray on monthly timescale. Furthermore, based on the object location on the variability index versus spectral index diagram, the positions of 4 objects in the sample were found to fall in the region of the already known BL Lac positions.
216 - F. Camilo , M. Kerr , P. S. Ray 2015
In a search with the Parkes radio telescope of 56 unidentified Fermi-LAT gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported in Kerr et al. (2012). We did not detect radio pulsations from another six pulsars now known in these sources. We describe the completed survey, which included multiple observations of many targets done to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. We present timing solutions and polarimetry for five of the MSPs, and gamma-ray pulsations for PSR J1903-7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are in >1 d circular orbits with 0.2-0.3 Msun presumed white dwarf companions. PSR J0955-6150, in a 24 d orbit with a ~0.25 Msun companion but eccentricity of 0.11, belongs to a recently identified class of eccentric MSPs. PSR J1036-8317 is in an 8 hr binary with a >0.14 Msun companion that is probably a white dwarf. PSR J1946-5403 is in a 3 hr orbit with a >0.02 Msun companion with no evidence of radio eclipses.
Fermi-LAT unidentified sources (unIDs) have proven to be compelling targets for performing indirect dark matter (DM) searches. In a previous work, we found that among the 1235 unIDs in Fermi-LAT catalogs (3FGL, 2FHL and 3FHL) only 44 of those are DM subhalos candidates. We now implement a spectral analysis to test whether these remaining sources are compatible or not with DM origin. This analysis is executed using almost 10 years of Pass 8 Fermi-LAT data. None of the unIDs are found to significantly prefer DM-induced emission compared to other, more conventional, astrophysical sources. In order to discriminate between pulsar and DM sources, we developed a new method which is based on the sources spectral curvature, peak energy, and its detection significance. We also look for spatial extension, which may be a hint for a DM origin according to our N-body simulation studies of the subhalo population. In addition, we used Gaia DR2 data to search for a potential stellar counterpart to our best DM subhalo candidates and, although no firm associations could be found, one of them coincides with the Sagittarius stream. Finally, previous constraints on the DM annihilation cross section are updated with the new number of remaining DM subhalo candidates among unIDs. Our limits now rule out canonical thermal WIMPs up to masses of 10 GeV for $bbar{b}$ and 20 GeV for $tau^+tau^-$ annihilation channels, in this way being as sensitive and complementary to those obtained from other targets and probes.
Aims. We aim here to contribute to the identification of unassociated bright sources of gamma-rays in the recently released catalogue obtained by the Fermi collaboration. Methods. Our work is based on a extensive cross-identification of sources fro m different wavelength catalogues and databases. Results. As a first result, we report the finding of a few counterpart candidates inside the 95% confidence error box of the Fermi LAT unidentified gamma-ray source 0FGL J1848.6$-$0138. The globular cluster GLIMPSE-C01 remarkably stands out among the most peculiar objects consistent with the position uncertainty of the gamma-ray source and with a conceivable physical scenario for gamma-ray production. The Fermi observed spectrum is compared against theoretical predictions in the literature making the association plausible but not yet certain due to its low X-ray to gamma-ray luminosity ratio. Other competing counterparts are also discussed. In particular, we pay a special attention to a possible Pulsar Wind Nebula inside the Fermi error box whose nature is yet to be confirmed. Conclusions.Both a globular cluster and an infrared source resembling a Pulsar Wind Nebula have been found in positional agreement with 0FGL J1848.6$-$0138. In addition, other interesting objects in the field are also reported. Future gamma-ray observations will narrow the position uncertainty and we hope to eventually confirm one of the counterpart candidates reported here. If GLIMPSE-C01 is confirmed, together with the Fermi possible detection of the well known globular cluster 47 Tuc, then it would provide strong support to theoretical predictions of globular clusters as gamma-ray sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا