ﻻ يوجد ملخص باللغة العربية
For a map $mathcal M$ cellularly embedded on a connected and closed orientable surface, the bases of its Lagrangian (also known as delta-) matroid $Delta(mathcal M)$ correspond to the bases of a Lagrangian subspace $L$ of the standard orthogonal space $mathbb{Q}^Eoplusmathbb{Q}^{E^*}$, where $E$ and $E^*$ are the edge-sets of $mathcal M$ and its dual map. The Lagrangian subspace $L$ is said to be a representation of both $mathcal M$ and $Delta(mathcal M)$. Furthermore, the bases of $Delta(mathcal M)$, when understood as vertices of the hypercube $[-1,1]^n$, induce a polytope $mathbf P(Delta(mathcal M))$ with edges parallel to the root system of type $BC_n$. In this paper we study the action of the Coxeter group $BC_n$ on $mathcal M$, $L$, $Delta(mathcal M)$ and $mathbf P(Delta(mathcal M))$. We also comment on the action of $BC_n$ on $mathcal M$ when $mathcal M$ is understood a dessin denfant.
We show that the mapping class group acts properly on the space of maximal representations of the fundamental group of a closed Riemann surface into G when G = Sp(2n,R), SU(n,n), SO*(2n) or Spin(2,n).
For an abelian group $Gamma$, a $Gamma$-labelled graph is a graph whose vertices are labelled by elements of $Gamma$. We prove that a certain collection of edge sets of a $Gamma$-labelled graph forms a delta-matroid, which we call a $Gamma$-graphic d
Assume that the vertices of a graph $G$ are always operational, but the edges of $G$ fail independently with probability $q in[0,1]$. The emph{all-terminal reliability} of $G$ is the probability that the resulting subgraph is connected. The all-termi
Given a 3-connected biased graph $Omega$ with a balancing vertex, and with frame matroid $F(Omega)$ nongraphic and 3-connected, we determine all biased graphs $Omega$ with $F(Omega) = F(Omega)$. As a consequence, we show that if $M$ is a 4-connected
In this note we show that if the automorphism group of a normal affine surface $S$ is isomorphic to the automorphism group of a Danielewski surface, then $S$ is isomorphic to a Danielewski surface.