ترغب بنشر مسار تعليمي؟ اضغط هنا

Dusty galaxies and the degeneracy between their dust distributions and the attenuation formula

89   0   0.0 ( 0 )
 نشر من قبل Kyle Penner
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Do spatial distributions of dust grains in galaxies have typical forms, as do spatial distributions of stars? We investigate whether or not the distributions resemble uniform foreground screens, as commonly assumed by the high-redshift galaxy community. We use rest-frame infrared, ultraviolet, and H$alpha$ line luminosities of dust-poor and dusty galaxies at z ~ 0 and z ~ 1 to compare measured H$alpha$ escape fractions with those predicted by the Calzetti attenuation formula. The predictions, based on UV escape fractions, overestimate the measured H$alpha$ escape fractions for all samples. The interpretation of this result for dust-poor z ~ 0 galaxies is that regions with ionizing stars have more dust than regions with nonionizing UV-emitting stars. Dust distributions for these galaxies are nonuniform. The interpretation of the overestimates for dusty galaxies at both redshifts is less clear. If the attenuation formula is inapplicable to these galaxies, perhaps the disagreements are unphysical; perhaps dust distributions in these galaxies are uniform. If the attenuation formula does apply, then dusty galaxies have nonuniform dust distributions; the distributions are more uniform than they are in dust-poor galaxies. A broad range of H$alpha$ escape fractions at a given UV escape fraction for z ~ 1 dusty galaxies, if real, indicates diverse dust morphologies and the implausibility of the screen assumption.



قيم البحث

اقرأ أيضاً

176 - C.M. Casey 2014
Galaxies rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates. While much recent work has focused on calibrating dust attenuation in galaxies sele cted at rest-frame ultraviolet wavelengths, locally and at high-$z$, here we investigate attenuation in dusty, star-forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15--500,$mu$m in the COSMOS field, in particular making use of {it Herschel} imaging, and a rich dataset on local galaxies, we find a empirical variation in the relationship between rest-frame UV slope ($beta$) and ratio of infrared-to-ultraviolet emission ($L_{rm IR}/L_{rm UV}equiv,IRX$) as a function of infrared luminosity, or total star formation rate, SFR. Both locally and at high-$z$, galaxies above SFR$gt$50,M$_odot$,yr$^{-1}$ deviate from the nominal $IRX-beta$ relation towards bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-$z$ dropout searches of $ll1$% at $zlt4-10$, providing independent verification that contamination from very dusty foreground galaxies is low in LBG searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g. galaxies with $>50$,M$_odot$,yr$^{-1}$, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at $zsim2$ exhibit steady-state star formation in secular disks.
We use a newly assembled large sample of 3,545 star-forming galaxies with secure spectroscopic, grism, and photometric redshifts at z=1.5-2.5 to constrain the relationship between UV slope (beta) and dust attenuation (L(IR)/L(UV)=IRX). Our sample ben efits from the combination of deep Hubble WFC3/UVIS photometry from the Hubble Deep UV (HDUV) Legacy survey and existing photometric data compiled in the 3D-HST survey, and extends the range of UV luminosity and beta probed in previous UV-selected samples. IRX is measured using stacks of deep Herschel/PACS 100 and 160 micron data, and the results are compared with predictions of the IRX-beta relation for different assumptions of the stellar population model and obscuration curve. We find that z=1.5-2.5 galaxies have an IRX-beta relation that is consistent with the predictions for an SMC extinction curve if we invoke sub-solar metallicity models that are currently favored for high-redshift galaxies, while the commonly assumed starburst attenuation curve over-predicts the IRX at a given beta by a factor of ~3. The IRX of high-mass (M*>10^9.75 Msun) galaxies is a factor of >4 larger than that of low-mass galaxies, lending support for the use of stellar mass as a proxy for attenuation. The commonly observed trend of fainter galaxies having bluer beta may simply reflect bluer intrinsic UV slopes for such galaxies, rather than lower obscurations. The IRX-beta for young/low-mass galaxies implies a dust curve that is steeper than the SMC, suggesting a lower attenuation at a given beta relative to older/more massive galaxies. The lower attenuations and higher ionizing photon output implied by low metallicity stellar population models point to Lyman continuum production efficiencies, xi_ion, that may be elevated by a factor of ~2 relative to the canonical value for L* galaxies, aiding in their ability to keep the universe ionized at z~2. [Abridged]
We explore the relation between dust and several fundamental properties of simulated galaxies using the Dusty SAGE semi-analytic model. In addition to tracing the standard galaxy properties, Dusty SAGE also tracks cold dust mass in the interstellar m edium (ISM), hot dust mass in the halo and dust mass ejected by feedback activity. Based on their ISM dust content, we divide our galaxies into two categories: ISM dust-poor and ISM dust-rich. We split the ISM dust-poor group into two subgroups: halo dust-rich and dust-poor (the latter contains galaxies that lack dust in both the ISM and halo). Halo dust-rich galaxies have high outflow rates of heated gas and dust and are more massive. We divide ISM dust-rich galaxies based on their specific star formation rate (sSFR) into star-forming and quenched subgroups. At redshift z=0, we find that ISM dust-rich galaxies have a relatively high sSFR, low bulge-to-total (BTT) mass ratio, and high gas metallicity. The high sSFR of ISM dust-rich galaxies allows them to produce dust in the stellar ejecta. Their metal-rich ISM enables dust growth via grain accretion. The opposite is seen in the ISM dust-poor group. Furthermore, ISM dust-rich galaxies are typically late-types, while ISM dust-poor galaxies resemble the early-type population, and we show how their ISM content evolves from being dust-rich to dust-poor. Finally, we investigate dust production from z=3 to z=0 and find that all groups evolve similarly, except for the quenched ISM dust-rich group.
253 - Jianbo Qin 2019
We compare the infrared excess (IRX) and Balmer decrement (${rm Halpha/Hbeta }$) as dust attenuation indicators in relation to other galaxy parameters using a sample of $sim$32 000 local star-forming galaxies (SFGs) carefully selected from SDSS, GALE X and WISE. While at fixed ${rm Halpha/Hbeta }$, IRX turns out to be independent on galaxy stellar mass, the Balmer decrement does show a strong mass dependence at fixed IRX. We find the discrepancy, parameterized by the color excess ratio $R_{rm EBV} equiv E(B-V)_{rm IRX}/E(B-V)_{rm Halpha/Hbeta }$, is not dependent on the gas-phase metallicity and axial ratio but on the specific star formation rate (SSFR) and galaxy size ($R_{rm e}$) following $R_{rm EBV}=0.79+0.15log({rm SSFR}/R_{rm e}^{2})$. This finding reveals that the nebular attenuation as probed by the Balmer decrement becomes increasingly larger than the global (stellar) attenuation of SFGs with decreasing SSFR surface density. This can be understood in the context of an enhanced fraction of intermediate-age stellar populations that are less attenuated by dust than the HII region-traced young population, in conjunction with a decreasing dust opacity of the diffuse ISM when spreading over a larger spatial extent. Once the SSFR surface density of an SFG is known, the conversion between attenuation of nebular and stellar emission can be well estimated using our scaling relation.
200 - Risa H. Wechsler 2018
In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they form. The advent of large galaxy surveys as well as hi gh-resolution cosmological simulations has provided a new window into the statistical relationship between galaxies and halos and its evolution. Here we define this galaxy-halo connection as the multi-variate distribution of galaxy and halo properties that can be derived from observations and simulations. This connection provides a key test of physical galaxy formation models; it also plays an essential role in constraints of cosmological models using galaxy surveys and in elucidating the properties of dark matter using galaxies. We review techniques for inferring the galaxy-halo connection and the insights that have arisen from these approaches. Some things we have learned are that galaxy formation efficiency is a strong function of halo mass; at its peak in halos around a pivot halo mass of 10^12 Msun, less than 20% of the available baryons have turned into stars by the present day; the intrinsic scatter in galaxy stellar mass is small, less than 0.2 dex at a given halo mass above this pivot mass; below this pivot mass galaxy stellar mass is a strong function of halo mass; the majority of stars over cosmic time were formed in a narrow region around this pivot mass. We also highlight key open questions about how galaxies and halos are connected, including understanding the correlations with secondary properties and the connection of these properties to galaxy clustering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا