ﻻ يوجد ملخص باللغة العربية
Do spatial distributions of dust grains in galaxies have typical forms, as do spatial distributions of stars? We investigate whether or not the distributions resemble uniform foreground screens, as commonly assumed by the high-redshift galaxy community. We use rest-frame infrared, ultraviolet, and H$alpha$ line luminosities of dust-poor and dusty galaxies at z ~ 0 and z ~ 1 to compare measured H$alpha$ escape fractions with those predicted by the Calzetti attenuation formula. The predictions, based on UV escape fractions, overestimate the measured H$alpha$ escape fractions for all samples. The interpretation of this result for dust-poor z ~ 0 galaxies is that regions with ionizing stars have more dust than regions with nonionizing UV-emitting stars. Dust distributions for these galaxies are nonuniform. The interpretation of the overestimates for dusty galaxies at both redshifts is less clear. If the attenuation formula is inapplicable to these galaxies, perhaps the disagreements are unphysical; perhaps dust distributions in these galaxies are uniform. If the attenuation formula does apply, then dusty galaxies have nonuniform dust distributions; the distributions are more uniform than they are in dust-poor galaxies. A broad range of H$alpha$ escape fractions at a given UV escape fraction for z ~ 1 dusty galaxies, if real, indicates diverse dust morphologies and the implausibility of the screen assumption.
Galaxies rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates. While much recent work has focused on calibrating dust attenuation in galaxies sele
We use a newly assembled large sample of 3,545 star-forming galaxies with secure spectroscopic, grism, and photometric redshifts at z=1.5-2.5 to constrain the relationship between UV slope (beta) and dust attenuation (L(IR)/L(UV)=IRX). Our sample ben
We explore the relation between dust and several fundamental properties of simulated galaxies using the Dusty SAGE semi-analytic model. In addition to tracing the standard galaxy properties, Dusty SAGE also tracks cold dust mass in the interstellar m
We compare the infrared excess (IRX) and Balmer decrement (${rm Halpha/Hbeta }$) as dust attenuation indicators in relation to other galaxy parameters using a sample of $sim$32 000 local star-forming galaxies (SFGs) carefully selected from SDSS, GALE
In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they form. The advent of large galaxy surveys as well as hi