ﻻ يوجد ملخص باللغة العربية
The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.
We formulate a mathematical model for daily activities of a cow (eating, lying down, and standing) in terms of a piecewise affine dynamical system. We analyze the properties of this bovine dynamical system representing the single animal and develop a
We discuss various limits of a simple random exchange model that can be used for the distribution of wealth. We start from a discrete state space - discrete time version of this model and, under suitable scaling, we show its functional convergence to
A number of discrete time, finite population size models in genetics describing the dynamics of allele frequencies are known to converge (subject to suitable scaling) to a diffusion process in the infinite population limit, termed the Wright-Fisher d
We consider a one-dimensional traffic model with a slow-to-start rule. The initial position of the cars in $mathbb R$ is a Poisson process of parameter $lambda$. Cars have speed 0 or 1 and travel in the same direction. At time zero the speed of all c
In this paper, a mathematical model is proposed to analyze the dynamic behavior of COVID-19. Based on inter-city networked coupling effects, a fractional-order SEIHDR system with the real-data from 23 January to 18 March, 2020 of COVID-19 is discusse