ﻻ يوجد ملخص باللغة العربية
We study the entropy production rate in systems described by linear Langevin equations, containing mixed even and odd variables under time reversal. Exact formulas are derived for several important quantities in terms only of the means and covariances of the random variables in question. These include the total rate of change of the entropy, the entropy production rate, the entropy flux rate and the three components of the entropy production. All equations are cast in a way suitable for large-scale analysis of linear Langevin systems. Our results are also applied to different types of electrical circuits, which suitably illustrate the most relevant aspects of the problem.
Computing the stochastic entropy production associated with the evolution of a stochastic dynamical system is a well-established problem. In a small number of cases such as the Ornstein-Uhlenbeck process, of which we give a complete exposition, the d
The entropy production rate (EPR) offers a quantitative measure of time reversal symmetry breaking in non-equilibrium systems. It can be defined either at particle level or at the level of coarse-grained fields such as density; the EPR for the latter
The entropy production is one of the most essential features for systems operating out of equilibrium. The formulation for discrete-state systems goes back to the celebrated Schnakenbergs work and hitherto can be carried out when for each transition
We introduce and analyze the notion of mutual entropy-production (MEP) in autonomous systems. Evaluating MEP rates is in general a difficult task due to non-Markovian effects. For bipartite systems, we provide closed expressions in various limiting r
We study the entropy production in non-equilibrium quantum systems without dissipation, which is generated exclusively by the spontaneous breaking of time-reversal invariance. Systems which preserve the total energy and particle number and are in con