Graphons are analytic objects representing limits of convergent sequences of graphs. Lovasz and Szegedy conjectured that every finitely forcible graphon, i.e. any graphon determined by finitely many graph densities, has a simple structure. In particular, one of their conjectures would imply that every finitely forcible graphon has a weak $varepsilon$-regular partition with the number of parts bounded by a polynomial in $varepsilon^{-1}$. We construct a finitely forcible graphon $W$ such that the number of parts in any weak $varepsilon$-regular partition of $W$ is at least exponential in $varepsilon^{-2}/2^{5log^*varepsilon^{-2}}$. This bound almost matches the known upper bound for graphs and, in a certain sense, is the best possible for graphons.