ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Magneto-Optical Rotation in Rubidium Vapor Excited with Blue Light

154   0   0.0 ( 0 )
 نشر من قبل Szymon Pustelny
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental and numerical studies of nonlinear magneto-optical rotation (NMOR) in rubidium vapor excited with resonant light tuned to the $5^2!S_{1/2}rightarrow 6^2!P_{1/2}$ absorption line (421~nm). Contrary to the experiments performed to date on the strong $D_1$ or $D_2$ lines, in this case, the spontaneous decay of the excited state $6^2!P_{1/2}$ may occur via multiple intermediate states, affecting the dynamics, magnitude and other characteristics of NMOR. Comparing the experimental results with the results of modelling based on Auzinsh et al., Phys. Rev. A 80, 1 (2009), we demonstrate that despite the complexity of the structure, NMOR can be adequately described with a model, where only a single excited-state relaxation rate is used.



قيم البحث

اقرأ أيضاً

We predict theoretically and demonstrate experimentally an ellipticity-dependent nonlinear magneto-optic rotation of elliptically-polarized light propagating in a coherent atomic medium. We show that this effect results from a hexadecapole and higher order momenta of atomic coherence, and is associated with an enhancement of Kerr and higher orders nonlinearities accompanied by suppression of the other linear and nonlinear susceptibility terms of the medium. These nonlinearities might be useful for quantum signal processing. In particular, we report an observation of an enhancement the polarization rotation of elliptically polarized light resonant with the 5S_{1/2} F=2 -> 5P_{1/2} F=1 transition of Rb87.
We study electromagnetically induced transparency (EIT) in a heated potassium vapor cell, using a simple optical setup with a single free-running diode laser and an acousto-optic modulator. Despite the fact that the Doppler width is comparable to the ground state hyperfine splitting, transparency windows with deeply sub-natural line widths and large group indices are obtained. A longitudinal magnetic field is used to split the EIT feature and induce magnetooptical anisotropy. Using the beat note between co-propagating coupling and probe beams, we perform a heterodyne measurement of the circular dichroism (and therefore birefringence) of the EIT medium. The observed spectra reveal that lin-par-lin polarizations lead to greater anisotropy than lin-perp-lin. A simplified analytical model encompassing sixteen Zeeman states and eighteen Lamda subsytems reproduces the experimental observations.
We report on an all-optical magnetometric technique based on nonlinear magneto-optical rotation with amplitude-modulated light. The method enables sensitive magnetic-field measurements in a broad dynamic range. We demonstrate the sensitivity of $4.3t imes10^{-9}$ G/$sqrt{text{Hz}}$ at 10 mG and the magnetic field tracking in a range of 40 mG. The fundamental limits of the method sensitivity and factors determining current performance of the magnetometer are discussed.
317 - Xinyi Xu 2015
In optical pumping of rubidium, a new kind of absorption occurs with a higher amplitude of radio frequency current. From measurement of the corresponding magnetic field value where this absorption occurs, there is a conclusion that it is multi-photon absorption. Both the degeneracy and energy of photons contribute to the intensity.
The Fresnel-Fizeau effect of transverse drag, in which the trajectory of a light beam changes due to transverse motion of the optical medium, is usually extremely small and hard to detect. We observe transverse drag in a moving hot-vapor cell, utiliz ing slow light due to electromagnetically induced transparency (EIT). The drag effect is enhanced by a factor 360,000, corresponding to the ratio between the light speed in vacuum and the group velocity under EIT conditions. We study the contribution of the thermal atomic motion, which is much faster than the mean medium velocity, and identify the regime where its effect on the transverse drag is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا