ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounds of memory strength for power-law series

127   0   0.0 ( 0 )
 نشر من قبل Fangjian Guo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents $alpha$. By permuting the independently drawn samples from a power-law distribution, we present non-trivial bounds on the memory strength (1st-order autocorrelation) as a function of $alpha$, which are markedly different from the ordinary $pm 1$ bounds for Gaussian or uniform distributions. When $1 < alpha leq 3$, as $alpha$ grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when $alpha > 3$, the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and browsing behavior of Taobao, we find that empirical power-law distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks, and challenge the validity of measures like autocorrelation and assortativity coefficient in heterogeneous systems.



قيم البحث

اقرأ أيضاً

We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nano-emitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters intensity autocorrelati on functions. As opposed to the widely-used threshold method, our technique therefore does not require discriminating the emission levels of bright and dark states in the experimental intensity timetraces. We rely on the simultaneous recording of 450 emission timetraces of single CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon sensitivity. Under these conditions, our approach can determine ON and OFF power-law exponents with a precision of 3% from a comparison to numerical simulations, even for shot-noise-dominated emission signals with an average intensity below 1 photon per frame and per quantum dot. These capabilities pave the way for the unbiased, threshold-free determination of blinking power-law exponents at the micro-second timescale.
The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a w ind farm. It contains two power-law trends and oscillations in the relatively low- and high-frequency ranges. The former is mostly due to the turbulent interaction between the flow and the turbine properties; whereas the latter is due to the advection between turbine pairs. The spectral wind-farm scale power fluctuations $Phi_P$ exhibits a power-law decay proportional to $f^{-5/3-2}$ in the region corresponding to the turbulence inertial subrange and at relatively large scales, $Phi_Psim f^{-2}$. Due to the advection and turbulent diffusion of large-scale structures, a spectral oscillation exists with the product of a sinusoidal behavior and an exponential decay in the frequency domain.
Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a way to build a model describing the time evolution of a financial index. We first make it fully explicit by us ing Student distributions instead of power law-truncated Levy distributions; we also show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.
We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a and variance va. These two control parameters determine if the avalanche size tends to a stationary distribution, (Finite Scale statistics with finite mean and variance or Power-Law tailed statistics with exponent in (1, 3]), or instead to a non-stationary regime with Log-Normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by analytical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions and provide a precise definition of the boundaries between the three regimes.
Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of such scaling law, both using ca reful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [Yan and Minnhagen, Physica A 444, 828 (2016)] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipfs law. Some misconceptions about scaling are also clarified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا