ﻻ يوجد ملخص باللغة العربية
Many time series produced by complex systems are empirically found to follow power-law distributions with different exponents $alpha$. By permuting the independently drawn samples from a power-law distribution, we present non-trivial bounds on the memory strength (1st-order autocorrelation) as a function of $alpha$, which are markedly different from the ordinary $pm 1$ bounds for Gaussian or uniform distributions. When $1 < alpha leq 3$, as $alpha$ grows bigger, the upper bound increases from 0 to +1 while the lower bound remains 0; when $alpha > 3$, the upper bound remains +1 while the lower bound descends below 0. Theoretical bounds agree well with numerical simulations. Based on the posts on Twitter, ratings of MovieLens, calling records of the mobile operator Orange, and browsing behavior of Taobao, we find that empirical power-law distributed data produced by human activities obey such constraints. The present findings explain some observed constraints in bursty time series and scale-free networks, and challenge the validity of measures like autocorrelation and assortativity coefficient in heterogeneous systems.
We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nano-emitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters intensity autocorrelati
The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a w
Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a way to build a model describing the time evolution of a financial index. We first make it fully explicit by us
We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a and variance va. These two control parameters determine if the avalanche
Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of such scaling law, both using ca