ﻻ يوجد ملخص باللغة العربية
An effective field theory is used to describe light nuclei, calculated from quantum chromodynamics on a lattice at unphysically large pion masses. The theory is calibrated at leading order to two available data sets on two- and three-body nuclei for two pion masses. At those pion masses we predict the quartet and doublet neutron-deuteron scattering lengths, and the alpha-particle binding energy. For $m_pi=510~$MeV we obtain, respectively, $^4a_{rm nD}=2.3pm 1.3~$fm, $^2a_{rm nD}=2.2pm 2.1~$fm, and $B_{alpha}^{}=35pm 22~$MeV, while for $m_pi=805~$MeV $^4a_{rm nD}=1.6pm 1.3~$fm, $^2a_{rm nD}=0.62pm 1.0~$fm, and $B_{alpha}^{}=94pm 45~$MeV are found. Phillips- and Tjon-like correlations to the triton binding energy are established. Higher-order effects on the respective correlation bands are found insensitive to the pion mass. As a benchmark, we present results for the physical pion mass, using experimental two-body scattering lengths and the triton binding energy as input. Hints of subtle changes in the structure of the triton and alpha particle are discussed.
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to
We compute the medium-mass nuclei $^{16}$O and $^{40}$Ca using pionless effective field theory (EFT) at next-to-leading order (NLO). The low-energy coefficients of the EFT Hamiltonian are adjusted to experimantal data for nuclei with mass numbers $A=
An approach for relating the nucleon excited states extracted from lattice QCD and the nucleon resonances of experimental data has been developed using the Hamiltonian effective field theory (HEFT) method. By formulating HEFT in the finite volume of
We investigate Nuclear Lattice Effective Field Theory for the two-body system for several lattice spacings at lowest order in the pionless as well as in the pionful theory. We discuss issues of regularizations and predictions for the effective range
We explore the lattice spacing dependence in Nuclear Lattice Effective Field Theory for few-body systems up to next-to-next-to leading order in chiral effective field theory including all isospin breaking and electromagnetic effects, the complete two