Galaxy merging is widely accepted to be a key driving factor in galaxy formation and evolution, while the feedback from AGN is thought to regulate the BH-bulge coevolution and the star formation process. In this context, we focused on 1SXPSJ050819.8+172149, a local (z=0.0175) Seyfert 1.9 galaxy (L_bol~4x10^43 ergs/s). The source belongs to an IR-luminous interacting pair of galaxies, characterized by a luminosity for the whole system (due to the combination of star formation and accretion) of log(L_IR/L_sun)=11.2. We present the first detailed description of the 0.3-10keV spectrum of 1SXPSJ050819.8+172149, monitored by Swift with 9 pointings performed in less than 1 month. The X-ray emission of 1SXPSJ050819.8+172149 is analysed by combining all the Swift pointings, for a total of ~72ks XRT net exposure. The averaged Swift-BAT spectrum from the 70-month survey is also analysed. The slope of the continuum is ~1.8, with an intrinsic column density NH~2.4x10^22 cm-2, and a deabsorbed luminosity L(2-10keV)~4x10^42 ergs/s. Our observations provide a tentative (2.1sigma) detection of a blue-shifted FeXXVI absorption line (rest-frame E~7.8 keV), suggesting the discovery for a new candidate powerful wind in this source. The physical properties of the outflow cannot be firmly assessed, due to the low statistics of the spectrum and to the observed energy of the line, too close to the higher boundary of the Swift-XRT bandpass. However, our analysis suggests that, if the detection is confirmed, the line could be associated with a high-velocity (vout~0.1c) outflow most likely launched within 80r_S. To our knowledge this is the first detection of a previously unknown ultrafast wind with Swift. The high NH suggested by the observed equivalent width of the line (EW~ -230eV, although with large uncertainties), would imply a kinetic output strong enough to be comparable to the AGN bolometric luminosity.