ﻻ يوجد ملخص باللغة العربية
We present infrared galaxy luminosity functions (LFs) in the AKARI North Ecliptic Pole (NEP) deep field using recently-obtained, wider CFHT optical/near-IR images. AKARI has obtained deep images in the mid-infrared (IR), covering 0.6 deg$^2$ of the NEP deep field. However, our previous work was limited to the central area of 0.25 deg$^2$ due to the lack of optical coverage of the full AKARI NEP survey. To rectify the situation, we recently obtained CFHT optical and near-IR images over the entire AKARI NEP deep field. These new CFHT images are used to derive accurate photometric redshifts, allowing us to fully exploit the whole AKARI NEP deep field. AKARIs deep, continuous filter coverage in the mid-IR wavelengths (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$mu$m) exists nowhere else, due to filter gaps of other space telescopes. It allows us to estimate restframe 8$mu$m and 12$mu$m luminosities without using a large extrapolation based on spectral energy distribution (SED) fitting, which was the largest uncertainty in previous studies. Total infrared luminosity (TIR) is also obtained more reliably due to the superior filter coverage. The resulting restframe 8$mu$m, 12$mu$m, and TIR LFs at $0.15<z<2.2$ are consistent with previous works, but with reduced uncertainties, especially at the high luminosity-end, thanks to the wide field coverage. In terms of cosmic infrared luminosity density ($Omega_{mathrm{IR}}$), we found that the $Omega_{mathrm{IR}}$ evolves as $propto (1+z)^{4.2pm 0.4}$.
We present galaxy luminosity functions at 3.6, 4.5, 5.8, and 8.0 micron measured by combining photometry from the IRAC Shallow Survey with redshifts from the AGN and Galaxy Evolution Survey of the NOAO Deep Wide-Field Survey Bootes field. The well-de
We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point sour
In this research, we provide a new, efficient method to select infrared (IR) active galatic nucleus (AGN). In the past, AGN selection in IR had been established by many studies using color-color diagrams. However, those methods have a problem in comm
The extragalactic background suggests half the energy generated by stars reprocessed into the infrared (IR) by dust. At z$sim$1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to inv
We present a preliminary analysis of clustering of galaxies luminous in the near- and mid-infrared as seen by seven various ilters of the AKARI IRC instrument from 2 $mu$m to 24 $mu$m in the the AKARI NEP-Deep field. We compare populations of galaxie