ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic spectra of linear HC$_5$H and cumulene carbene H$_2$C$_5$

137   0   0.0 ( 0 )
 نشر من قبل Mathias Steglich
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $1 ^3Sigma_u^- leftarrow X^3Sigma_g^-$ transition of linear HC$_5$H (A) has been observed in a neon matrix and gas phase. The assignment is based on mass-selective experiments, extrapolation of previous results of the longer HC$_{2n+1}$H homologues, and density functional and multi-state CASPT2 theoretical methods. Another band system starting at 303 nm in neon is assigned as the $1 ^1 A_1 leftarrow X ^1 A_1$ transition of the cumulene carbene pentatetraenylidene H$_2$C$_5$ (B).



قيم البحث

اقرأ أيضاً

We report the first detection in space of the cumulene carbon chain $l$-H$_2$C$_5$. A total of eleven rotational transitions, with $J_{up}$ = 7-10 and $K_a$ = 0 and 1, were detected in TMC-1 in the 31.0-50.4 GHz range using the Yebes 40m radio telesc ope. We derive a column density of (1.8$pm$0.5)$times$10$^{10}$ cm$^{-2}$. In addition, we report observations of other cumulene carbenes detected previously in TMC-1, to compare their abundances with the newly detected cumulene carbene chain. We find that $l$-H$_2$C$_5$ is $sim$4.0 times less abundant than the larger cumulene carbene $l$-H$_2$C$_6$, while it is $sim$300 and $sim$500 times less abundant than the shorter chains $l$-H$_2$C$_3$ and $l$-H$_2$C$_4$. We discuss the most likely gas-phase chemical routes to these cumulenes in TMC-1 and stress that chemical kinetics studies able to distinguish between different isomers are needed to shed light on the chemistry of C$_n$H$_2$ isomers with $n$,$>$,3.
The chemical compounds carrying the thiol group (-SH) have been considered essential in recent prebiotic studies regarding the polymerization of amino acids. We have searched for this kind of compounds toward the Galactic Centre quiescent cloud G+0.6 93-0.027. We report the first detection in the interstellar space of the trans-isomer of monothioformic acid (t-HC(O)SH) with an abundance of $sim,$1$,times,$10$^{-10}$. Additionally, we provide a solid confirmation of the gauche isomer of ethyl mercaptan (g-C$_2$H$_5$SH) with an abundance of $sim,$3$,times,$10$^{-10}$, and we also detect methyl mercaptan (CH$_3$SH) with an abundance of $sim,$5$,times,$10$^{-9}$. Abundance ratios were calculated for the three SH-bearing species and their OH-analogues, revealing similar trends between alcohols and thiols with increasing complexity. Possible chemical routes for the interstellar synthesis of t-HC(O)SH, CH$_3$SH and C$_2$H$_5$SH are discussed, as well as the relevance of these compounds in the synthesis of prebiotic proteins in the primitive Earth.
We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunn eling (CVT/$mu$OMT) were applied using a fitted potential energy surface [J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval $ 4 cdot 10^{-20}$ to $4 cdot 10^{-17}$ cm$^3$ s$^{-1}$ , demonstrating that even deuterat
139 - R. Nath , M. Padmanabhan , S. Baby 2014
We report structural and magnetic properties of the spin-$frac12$ quantum antiferromagnet Cu[C$_6$H$_2$(COO)$_4$][C$_2$H$_5$NH$_3$]$_2$ by means of single-crystal x-ray diffraction, magnetization, heat capacity, and electron spin resonance (ESR) meas urements on polycrystalline samples, as well as band-structure calculations. The triclinic crystal structure of this compound features CuO$_4$ plaquette units connected into a two-dimensional framework through anions of the pyromellitic acid [C$_6$H$_2$(COO)$_4$]$^{4-}$. The ethylamine cations [C$_2$H$_5$NH$_3]^+$ are located between the layers and act as spacers. Magnetic susceptibility and heat capacity measurements establish a quasi-two-dimensional, weakly anisotropic and non-frustrated spin-$frac12$ square lattice with the ratio of the couplings $J_a/J_csimeq 0.7$ along the $a$ and $c$ directions, respectively. No clear signatures of the long-range magnetic order are seen in thermodynamic measurements down to 1.8,K. However, the gradual broadening of the ESR line suggests that magnetic ordering occurs at lower temperatures. Leading magnetic couplings are mediated by the organic anion of the pyromellitic acid and exhibit a non-trivial dependence on the Cu--Cu distance, with the stronger coupling between those Cu atoms that are further apart.
The non-adiabatic quantum dynamics of the H+H$_2^+$ $rightarrow$ H$_2$+ H$^+$ charge transfer reactions, and some isotopic variants, is studied with an accurate wave packet method. A recently developed $3times$3 diabatic potential model is used, whic h is based on very accurate {it ab initio} calculations and includes the long-range interactions for ground and excited states. It is found that for initial H$_2^+$(v=0), the quasi-degenerate H$_2$(v=4) non-reactive charge transfer product is enhanced, producing an increase of the reaction probability and cross section. It becomes the dominant channel from collision energies above 0.2 eV, producing a ratio, between v=4 and the rest of vs, that increases up to 1 eV. H+H$_2^+$ $rightarrow$ H$_2^+$+ H exchange reaction channel is nearly negligible, while the reactive and non-reactive charge transfer reaction channels are of the same order, except that corresponding to H$_2$(v=4), and the two charge transfer processes compete below 0.2 eV. This enhancement is expected to play an important vibrational and isotopic effect that need to be evaluated. For the three proton case, the problem of the permutation symmetry is discussed when using reactant Jacobi coordinates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا