ترغب بنشر مسار تعليمي؟ اضغط هنا

Contributions to the width difference in the neutral $D$ system from hadronic decays

94   0   0.0 ( 0 )
 نشر من قبل Tim Gershon
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent studies of several multi-body $D^0$ meson decays have revealed that the final states are dominantly $CP$-even. However, the small value of the width difference between the two physical eigenstates of the $D^0$-$overline{D}{}^0$ system indicates that the total widths of decays to $CP$-even and $CP$-odd final states should be the same to within about a percent. The known contributions to the width difference from hadronic $D^0$ decays are discussed, and it is shown that an apparent excess of quasi-$CP$-even modes is balanced, within current uncertainty, by interference effects in quasi-flavour-specific decays. Decay modes which may significantly affect the picture with improved measurements are considered.



قيم البحث

اقرأ أيضاً

138 - Jose A. Oller 2004
We show that the large corrections due to final state interactions (FSI) in the D^+to pi^-pi^+pi^+, D^+_sto pi^-pi^+pi^+, and D^+to K^-pi^+pi^+ decays can be accounted for by invoking scattering amplitudes in agreement with those derived from phase s hifts studies. In this way, broad/overlapping resonances in S-waves are properly treated and the phase motions of the transition amplitudes are driven by the corresponding scattering matrix elements determined in many other experiments. This is an important step forward in resolving the puzzle of the FSI in these decays. We also discuss why the sigma and kappa resonances, hardly visible in scattering experiments, are much more prominent and clearly visible in these decays without destroying the agreement with the experimental pipi and Kpi low energy S-wave phase shifts.
The $B_s to D_s^{(*)pm} K^mp$ decays allow a theoretically clean determination of $phi_s+gamma$, where $phi_s$ is the $B^0_s$-$bar B^0_s$ mixing phase and $gamma$ the usual angle of the unitarity triangle. A sizable $B_s$ decay width difference $Delt aGamma_s$ was recently established, which leads to subtleties in analyses of the $B_s to D_s^{(*)pm} K^mp$ branching ratios but also offers new untagged observables, which do not require a distinction between initially present $B^0_s$ or $bar B^0_s$ mesons. We clarify these effects and address recent measurements of the ratio of the $B_sto D_s^pm K^mp$, $B_sto D_s^pmpi^mp$ branching ratios. In anticipation of future LHCb analyses, we apply the SU(3) flavour symmetry of strong interactions to convert the $B$-factory data for $B_dto D^{(*)pm}pi^mp$, $B_dto D_s^{pm}pi^mp$ decays into predictions of the $B_s to D_s^{(*)pm} K^mp$ observables, and discuss strategies for the extraction of $phi_s+gamma$, with a special focus on untagged observables and the resolution of discrete ambiguities. Using our theoretical predictions as a guideline, we make simulations to estimate experimental sensitivities, and extrapolate to the end of the planned LHCb upgrade. We find that the interplay between the untagged observables, which are accessible thanks to the sizable $DeltaGamma_s$, and the mixing-induced CP asymmetries, which require tagging, will play the key role for the experimental determination of $phi_s+gamma$.
While the factorization assumption works well for many two-body nonleptonic $B$ meson decay modes, the recent measurement of $bar Bto D^{(*)0}M^0$ with $M=pi$, $rho$ and $omega$ shows large deviation from this assumption. We analyze the $Bto D^{(*)}M $ decays in the perturbative QCD approach based on $k_T$ factorization theorem, in which both factorizable and nonfactorizable contributions can be calculated in the same framework. Our predictions for the Bauer-Stech-Wirbel parameters, $|a_2/a_1|= 0.43pm 0.04$ and $Arg(a_2/a_1)sim -42^circ$ and $|a_2/a_1|= 0.47pm 0.05$ and $Arg(a_2/a_1)sim -41^circ$, are consistent with the observed $Bto Dpi$ and $Bto D^*pi$ branching ratios, respectively. It is found that the large magnitude $|a_2|$ and the large relative phase between $a_2$ and $a_1$ come from color-suppressed nonfactorizable amplitudes. Our predictions for the ${bar B}^0to D^{(*)0}rho^0$, $D^{(*)0}omega$ branching ratios can be confronted with future experimental data.
105 - Sachio Iwasaki , Kei Suzuki 2018
We study the radiative (E1 and M1) decays of P-wave quarkonia in a strong magnetic field based on the Lagrangian of potential nonrelativistic QCD. To investigate their properties, we implement a polarized wave function basis justified in the Paschen- Back limit. In a magnetic field stronger than the spin-orbit coupling, the wave functions of the P-wave quarkonia are drastically deformed by the Hadronic Paschen-Back effect. Such deformation leads to the anisotropy of the direction of decays from the P-wave quarkonia. The analytic formulas for the radiative decay widths in the nonrelativistic limit are shown, and the qualitative decay properties are discussed.
338 - M. Knecht 2002
We reanalyze the two-loop electroweak hadronic contributions to the muon g-2 that may be enhanced by large logarithms. The present evaluation is improved over those already existing in the literature by the implementation of the current algebra Ward identities and the inclusion of the correct short-distance QCD behaviour of the relevant hadronic Greens function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا